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Introduction

Let A be an element of the general linear group GL,(C) and let X,,..., X} be
n X n (generic) matrices with algebraically independent indeterminate entries
xg’ﬂ, a,8=1,...,n,¢=1,...,k. Then there is an action of GL,(C) on the
polynomial ring F = C[z}, 3] 5,; defined by: xﬁl’ﬂ is mapped by A to the (a, 3)
entry of AX;A~!. The fixed ring of this action is denoted C and has a number
of important properties. Let R be the algebra generated by the generic matrices
X1,Xs,...,Xg. Then one of the important properties of C is that it is the
algebra generated by the traces of elements of R. It is not hard to see that C
has a k-fold grading by degree, and so there is associated to it a Poincaré series
P,.(C). Tt is known that P(C) is a rational function, and it has been computed
in a number of cases. One important tool has been the Weyl integration formula

which expresses Pi(C) as a complex integral

—1
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where the integral is over the torus |2,] = 1, for &« = 1,...,n, and the measure is
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We will say more about why this integral gives Px(C) in Section 1 in which we
will generalize it to the other classical groups.

If we take the algebra R = RC generated by generic matrices and their traces,
we also get a ring of GL,(C) invariants. Consider the n x n matrices over
Clz?, gla,p,i With GL,(C) action obtained by the composition of the action of
GL,(C) defined above with conjugation on matrices. Then the fixed ring is R
and so it again follows from Weyl’s formula that R has Poincaré series which can
be calculated as an integral. The integral is

-1 _1
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In [T1], [T2] and [BS], (1) and (2) were used to calculate the Poincaré series
for C and R for (n,k) = (2,2), (2,3), (3,2), (3,3) and (4,2). (The case of 2 x 2
matrices was also done in [F1], [F2] and [L] using more purely algebraic methods.)
In [BS], the least denominator was also calculated for (3,k) and conjectured for
(4,k).

It is our goal in this paper to generalize this work from generic matrices to

(2)

generic matrices with involution. For n odd the only involutions are of transpose
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type, and for n even the involution may be of either transpose or symplectic type.
Procesi showed in [P] that the corresponding trace ring is a ring of invariants for
either the orthogonal or symplectic group. It turns out in the symplectic and odd
(but not even) orthogonal cases that the Poincaré series can be calculated using
Weyl’s integration formulas. Consider for example the case of the symplectic
involution on 2n x 2n matrices. The relevant integral is then

+
H1<a<B<n(1 :H~ 1) Ha 1(1 - ’ﬂ)
an' ,ﬁ_l HL 1(1 _ ~z:xtl~g:1t )

(3) dv,

where T is the unit torus, as above.

Not only may C and R be considered as a k-fold graded algebra, but they can
also be given a finer 2k-fold grading. The algebra generated by k generic matrices
together with their transposes is isomorphic to the algebra generated by % generic
symmetric matrices and k generic skew symmetric matrices. These generators
induce the 2k-fold grading. More generally still, given an involution on matrices,
we may consider the algebra generated by k, generic symmetric matrices and ks
generic skew symmetric matrices. This algebra will have a (k; + k2)-fold grading
and a formal power series in variables 1,...,Zk,, Y1, -, Yk, We distinguish this
series by referring to it as the *-Poincaré series. It turns out that the analogues
of C and R in this case are also invariants for one of the classical groups, and
that the integrals can be constructed to calculate the *-Poincaré series as well as
the Poincaré series.

In Section 1 we present the results we need from invariant theory and construct
the integrals which we will be studying. In Section 2 we use these integrals
together with the algebraic properties of the generic matrix algebras to prove
some general results about the Poincaré series and *-Poincaré series. These
results are all known in the case of matrices without involution, and are mostly
new in the present case. The main results of this section show that each series is a
rational function and describes which type of terms can occur in the denominator
(Theorem 6); give a functional equation satisfied by these rational functions in
some cases (Theorem 9); and, identify the orders of the poles at 1 for the *-
Poincaré series case, except for z; = 1 in the symplectic case (Theorem 10).

In Sections 3 and 4, we investigate the case of 3 X 3 matrices with transpose
involution. For convenience, we do the case of C and R separately. Our main
results in these sections are that P(C) can be written as a fraction in lowest
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terms with denominator
k

[Ta-tya-Pa—e* ] Q-tt;)3Q-t:td)*(1 - #3))%,
i=1 1<i<j<k
and that P(R) can be written as a fraction in lowest terms with denominator
k
[Ta-tPa-® ] -tt;)3Q - t:td)*(1 - t3t;)2
i=1 1<i<j<k
We investigate least denominators for the *-Poincaré series, and calculate each
of the series in a few cases. As a corollary, we are able to calculate the character
sequences for C(0, k) and R(0, k).

In Section 5 we work on 4 x 4 matrices with symplectic involution. For each of
the Poincaré series and *-Poincaré series we calculate a denominator. We suspect
that it is not a least denominator, but is not too far off. We conjecture what we
think the least denominator is in the *-Poincaré case.

1. Invariants and integrals

For more information on the classical groups we refer the reader to [FuH]. Let G
be one of the groups GL,(C), Sps,(C), SO2,(C) or SO2,+1(C), and let M be a
G-module. The group G contains a Cartan subgroup H, which we may take to be
the set of all diagonal matrices in G. The character of M may be defined to be the
trace of H on M, so the character will be a function of n variables. This character
determines M up to G-isomorphism. In particular, it determines the multiplicity
of each irreducible G-module in M and this multiplicity can be calculated from
the character using integration. We will be interested only in the special case of
the trivial character. As in the introduction, let 7' ¢ H be the diagonal elements

with entries of absolute value 1 and let dv be the translation-invariant measure
1 dziA---Adz,
2m))  z1...2p

dv =

on T. Here is Weyl's integration formula.

THEOREM 1 (Weyl): Given G, one of the classical group as above, there exists

a polynomial P = P(z1,...,2,) such that if M is a G-module with character
f(z1,-..,2n), then fT Pfdv is the dimension of the space of G-invariant elements
of M.

We now record the polynomials Pg. Let

Afzyy ..oy 2p) = H (28 — 2a)

a<f
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be the Vandermonde determinant. If G = GL,,(C) then
1 - -
P(z1,.c.y2) = mA(zl, oy zn)A(2] S )

Ziu [1 -2z,

1<a#8<n

If G = Sp,,,(C) then

yZn + z;l)Q(zl - zl”l)2 .

=5 I ¢ —Milzglnl—z

'1§a<ﬁ<n

oz — 2712

where we use the plus or minus notation, here and throughout, as a shorthand
for [],, c,—=+1(1 — 25'2;?) in the first factor and [],_,,(1 — z{) in the second.
If G = SO5,(C) then

1
P(z1,..oy2y) = 51 ‘A(~1+21 yeo ”'"+"n1)2
1 SEL R
~2np! H (1—27257)-
1<a<B<n

Finally, if G = SO2,,41(C) then

1" _ 1 1 1 _1
P(zl,...,zn)z(Qn—n)‘A(zl+z1 L. 4n+~n1)2(zf -z )2 (22 — 2 2)?

:2”177,' H :1:1 :I:l I:I z(fl).

" 1<a<pB<n

We will need Weyl’s integration formula in the form of this corollary.

COROLLARY 2: Let V be a vector space graded by N*,
V=P Vian...,on)
Q10O

such that each homogeneous subspace is finite dimensional. Assume that V is
a G-module and that the action respects degree. Let V(ay,...,a,) have G-
character fo(z1,...,2,) and let

F(ty,... tn Zfa R i L
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Then the fixed ring V¢ has Poincaré series equal to fT PFdy.

Let F = F(N, k) be the polynomial ring in the variables a:fl,ﬁ, o, f=1,...,N,
i =1,...,k and recall the action of GLx(C) on F in which A € GLy(C) sends
each xflyﬁ to the (@, () entry of the matrix AX;A™!, where X; is the generic
matrix with entries 27, ;. There is an action of GLx(C) on My(F) obtained by
composing the previous action on F with the conjugation B — A~'BA. The
fixed ring FEL~O is the ring C = C(N, k) generated by the image of the trace
map from the ring R = R(N, k) generated by the generic matrices C[X1,. .., X]
to F, and the fixed ring My (F)%2(© is the ring R = R(N, k) generated by R and
C. These facts are due to Procesi, and are equivalent to the First Fundamental
Theorem of invariant theory for the general linear group. If N = 2n is even, then
Sps, (€) and O, (C) are contained in GLy(C) and if N = 2n + 1 is odd, then
02,+1(C) is contained in GLyx(C). So, by restriction, each classical group has
an action on F and on My (F).

Up to conjugation My (C) accepts one involution if N is odd and two if N is
even. These extend to My (F). Consider the algebra generated by the generic
matrices X7, ..., X} together with their images under the involution, X7,..., X}.
If the involution is transpose type, we will denote this ring by R(N, k;t) and if
it is of symplectic type, by R(N, k;s). The commutative algebras generated by
the traces will be denoted C(N,k;t) and C(N,k;s), and the non-commutative
algebras with trace generated by the generic matrices will be denoted R(N, k;t)
and R(N,k;s). The next theorem is from Procesi’s seminal paper [P].

THEOREM 3 (Procesi): Let F' = F(N,k). Then
(1) if N = n, then FGLn(©) = C(n, k) and M, (F)%L© = R(n, k);
(2) if N = 2n, then FO»(O = C(2n,k;t) and My, (F)°~© = R(2n,k;t);
(3) if N = 2n, then F5P2~(©) = C(2n,k; s) and Ma, (F)5P>n(©) = R(2n, k; 5);
(4) if N = 2n+ 1, then FO+1(©) = C(2n + 1, k;t) and Moy 4 (F)02n+© =
R(?n + 1,k;1).

Aside. Procesi also related each C' and R to an algebra of simultaneous
invariants of matrices. Consider a map F: M,(C)* — C. Such a map will be
called G-invariant if

F(gAlg‘l,gAzg_l, . ..,gAkg"l) = F(A1, 4s, ..., Ak)

for all ¢ € G and all A4,..., Ax € M,,(C). The set of all G invariant maps which
are polynomial in the entries of the matrices forms an algebra, and Procesi’s
theorem says that this algebra is isomorphic to the appropriate C(n, k; —). If we
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instead consider the invariant maps from M, (C)* to M,(C) we get an algebra
isomorphic to R(n, k; —).

In (4) note that the odd orthogonal group Og,,41(C) is the direct product of the
special orthogonal group SOs,.1(C) with the two element group geunerated by
the scalar matrix —I. Since the action is by conjugation —I acts as the identity so
the Q2,4 1(C) invariants are the same as the SOgy,41(C) invariants. In the case of
02,(C) we don’t know of a similar reduction. Although the SO2,(C) invariants
may be of intrinsic interest, we choose not to compute them here because they
don’t relate directly to C(2n, k;t) or R(2n,k;t). Combining Theorem 3 with
Corollary 2, we may express the Poincaré series of each C and R, except for the
even orthogonal case, as an integral, once we compute the character of each F'
and My (F). The case of the general linear group was the subject of [V] and is
included here only for the sake of completeness.

LEMMA 4: Given n and k. the characters of F = F(N, k) and Mn(F) are given
by
(1) F has GL,,(C)-character

k n
[T I (1 -zaz5t)
i=la,f=1
and M, (F) has GL,(C)-character equal to the character of F' times
n n n
S . =1
5 (£4)(5)
a,B=1 a=1 a=1

(2) F has Sp,,(C)-character and SOz, (C)-character equal to

and Mo, (F) has character equal to the character of F times
n 2
(Z(;a + 2;1)> .
a=1
(3) F has SOgy,4+1(C)-character equal to

k n n

[T = =ftdte) = [ - =220 - 67Y)]

i=1 a,4=1 a=1
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and Mo, 41 (F) has character equal to the character of F' times

(1 + ;(za + z;1)>2.

Proof: Consider first the case of F. Let D be the diagonal matrix with entries

Z1,...,2n in the case of GL,(C); entries z1,..., 2y, 2] ~1 ...,z7! in the cases of

’*n
Spy, (C) and SO2,(C); and with entries z1,...,2n,27",...,2; %1 in the case
of SO2n41(C). Each generator «, ; of F is an eigenvector for D under the
action. Computing the eigenvalues gives the characters of F' as claimed. For
Mn(F) = MN(C) @ F we multiply the character of F' times the character of
Mp(C). In My (C) each matrix unit e, 5 is an eigenvector and the result follows

from an easy computation. |

We may now express each of the Poincaré series as a complex integral over the
torus |z;| = 1,4 =1,...,n with respect to the translation invariant measure dv.

P(C(2n,k;s)) =
(3) 1 Ili<acpcnl— zﬂz;fl)Ha (1 - 222)
2mnl Jp | [os=(1- Zaﬂmﬂtz)
P(R(2n, k;s)) =
}{ H1<a<[3<n(1 zE! i1) Moo (1— Zﬂ)(zz,ﬁ:ﬂza +231))?
Hz 1 H B= 1(1 - Zétlzilti)

dv,

il dv,

P(C(2n+1,k;t)) =

licacpen - % EI)HZﬂ(l—”il
5]
(5) 2nn|f Hz 1 aﬁ=1(1"~a zﬁ t)HZzl(l—za D21 - 1))

b

P(R(2n+ 1,k;t)) =
(6) ! HlSa<,B<n(1 22 ) Mo (U= 220 (1 + 320y (20 + 251))°
ol Jr I (T per (1 - 28725 ) [Toe, (1 - 2374)2(1 - t2))

In the case of matrices with involution the Poincaré series may be refined to

the *-Poincaré series. The algebra with trace generated by k generic matrices
together with their transposes may equally well be thought of as the algebra with
trace generated by k generic symmetric matrices and k generic skew symmetric
matrices. This induces a 2k-fold grading on the algebra and on the algebra of
traces. The corresponding Poincaré series is called the *-Poincaré series. From
the point of view of characters, when we pass from a k-fold grading to a 2k-
fold grading, we are passing from a GLx(C)-character to a GLx(C) x GLx(C)-
character. This theory is discussed in [G].
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More generally, given a set of generic n X n matrices {X,} together with their
transposes of some type {X:} we may let S = X, + X} and Ko = X, — X2
be generic symmetric and generic skew symmetric matrices, respectively. For
fixed k; and k3 let R = R(n,ky,ko;s or t) be the algebra with trace generated
by S1y-.vy Sk, K1y .oy iy let C = C(n, ky, ko; s or t) be the algebra generated
by the traces or elements of R; and let R = R(n, ki, ko; s or t) be the algebra
generated by R and C. Also, let F be the commutative algebra generated by
the entries of 51,...,Sk,, K1,..., Kk,. The following is a corollary of Procesi’s
theorem.

LEMMA 5: With notation as in the previous paragraph, F¢ = C and M,,(F)¢
R.

Equations (7) and (8) below follow from corollary 7.3 of [B]. Equations (9)
and (10), although not explicit in [B], are similar.

1
2"%‘
‘% Hl<a<[3<n(1 il”;ﬂ) H (1 - 212) dv
H a B= 1(1—ZO‘~6 zi)H1§a<ﬂSn(1—(2°‘zﬁ)ilzi)} ]
Haﬂ 1(1—za351yi)Hlsasﬁsﬂ(l—(zazﬁ)ilyi)}

0(271, k17 k?) 8)(1:17 . ‘1$k17y17 - ’yk2)

(7)

P 1
R(2n,ky, ko; $)(T1, .+ Thys YLy v oy Yky) = ST <
j: p—
(8) [Ticacsen(@ = 25125 ) Tacy (1= 222)(27 5ot Za + 25 1)2dy
T H {Ha B= 1(1—20251‘“)ng,,(ﬂSn(l“(zazﬁ)ilxi) ’

H {Ha A= 1(1_20‘7;1%)H1§a5ﬁ§n(1_(2a2ﬂ)ilyi)}
C@2n+ 1, k1, ko t)(@1s o Ty Yty -2 Uky) =

k1
1 numerator
9 s [0 —z) ™t g
(9) gnpl 21;11( i) ﬁdenomina‘cor g
where

numerator = H (1-23 ﬂ ﬁ -z

1<a<f<k
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and

k1 n
denominator:H{ H ~a~ﬂ z) H (1- (zazﬁ)ilfﬂi)
i=1

a,f=1 1<a<B<n

SIEE }ﬁ{ IT (- oz

a=1 i=1  a,f=1
X H (1 — (za2p)ys) H(1 ~ 7' yi) }
1<a<f<n
R(2n + 17 klv k?;t)(l‘ls e 7$k17y17 o 7yk2) =
1 & numerator
10 Py L=z) ™
(10) onpl al;[l( i) }[Tdenommator g

where

n n
numerator = H (1- z;tlz,gtl) H(l - zEh(1+ Z(Za +231%)
a=1 a=1

1<a<f<k

and

kl n
denominator = H { H (1- zazglxi)
Z'_

a,3=1
n
x H (1 — (zq23)% ) H(l - zilxz)}
1<a<p<n a=1
kz n
H { H (1- ZaZg yz) (1- (/«a/-'ﬁ)ilyz)
i=1 ~ a,f=1 1<a<B<n
n
(1- folyi)}
a=1

Aside. The algebras C(n, ky, k2; —) and R(n, ky, k2; —) also have an interpre-
tation in terms of G-invariant maps. Instead of all maps from M, (C)* to C
or M,,(C), we consider the algebra of G-invariant maps defined on the set of all
k1 + ko-tuples of matrices, the first k; of which being constrained to be symmetric
and the last k2 being constrained to be skew symmetric.
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2. General properties

A number of general properties of the Poincaré series for generic matrices have
been derived from the algebraic properties of these matrices and from properties
of complex integrals. Almost all of these arguments can be adapted to our more
general setting of matrices with involution, and that is the goal of this section.
These properties will be useful in the subsequent computation of the series in
individual cases. Our first theorem follows from algebraic considerations.

THEOREM 6: Each of the Poincaré series and *-Poincaré series for each C and R
(without involution, or with either type of involution) is a rational function. For
the Poincaré series, the denominator can be taken to be a product of terms of
the form 1 —t* and for the *-Poincaré series case, the denominator can be taken
to be a product of terms of the form 1 — x*yP.

Proof:  Since the classical groups are all reductive, it follows from the Hochster—
Roberts theorem [HR] that C, their algebras of commutative invariants, are
graded Cohen-Macauley. Theorem 6 now follows in the case of C from Stan-
ley’s theorem, see [S]. For the Poincaré series of R we use the observation that
the map f(X1,...,Xg) — tr(f(X1,.... Xg)Xg+1) is a vector space isomorphism
of R(n, k) with the part of C(n,k + 1) of degree 1 in Xjy1. It follows that

_ J =
P(R(n,k)) = m@(n, k+ Dleyp=o-

The *-Poincaré series case is similar. The algebra R(n,k) is the vector space
direct sum of its symmetric and skew symmetric parts. Let f(Xy,...,X%) be
a symmetric matrix. Then we map it to tr(f(X1,..., Xg)Sk41) in the orthogo-
nal case and to tr(f(X1,..., Xx)Kq1) in the symplectic case. And we do the
opposite for skew symmetric matrices. It follows that

R(n Kv Ko _) - 8C’(k1 + 1, ko; —) i 0C(k1, ko +1; —) :
THh R a»'Uk1+1 Thy+1=0 ’ 3yk2+1 yk2+1=0‘

COROLLARY T7: If P(C) can be written as a fraction in which 1 — u occurs in

the denominator with multiplicity a, then P(R) can be written as a fraction in
which 1 — u occurs in the denominator with multiplicity at most a + 1.

We have observed that if v is a monomial of degree at least 2, then 1 — u
occurs in the least denominator of each P(C) and corresponding P(R) with
equal multiplicity. We conjecture that this will always be the case.
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THEOREM 8: Fach Poincaré series is a symmetric function in the t variables,
and each *-Poincaré series is a symmetric function in the x variables and in the
y variables (separately).

Proof: Clear. ]

THEOREM 9: Let P(ty,...,t) be the Poincaré series for C, either with or with-
out involution, and with k > 2, and let N = 2n or N = 2n + 1 be the size of the
matrices. Then P satisfies the functional equation

Pt = (1)t - t)N Py, - - ),

where d is kn+n+1 in the case of matrices without involution, k+n in the case of
transpose-type involution, and n in the case of symplectic involution. Likewise,

let P(xy,...,%k,sY1,---,Yk,) be the *-Poincaré series for C, and assume that
ki + ko > 2; and that ky > 1 in the symplectic case and ky > 1 in the orthogonal
case. Then

P(z7?,. ..,x;l,yfl,...,y,:zl)

= (—l)d(xl o 'xkl)a(yl o -ykz)ﬁp(‘rl’ ey Tk Y1, - '7yk2)’

where (d, a, 8) is (n(ky + kg + 1),2n% — n,2n? + n) in the symplectic case and
(n(ky + k2 + 1) + k1, 2n? + 3n + 1,2n2 + n) in the orthogonal case.

Proof: The case of the ordinary Poincaré series was proven by Teranishi in [T1],
and the same proof applies in the *-Poincaré series case. 1

THEOREM 10: The *-Poincaré series P(C(2n, k1, k2; s)) and P(R(2n, k1, ko; 5))
have poles of order n at each z; = 1 and y; = 1, and the *-Poincaré series
P(C(2n + 1,k1, ko3 t)) and P(R(2n + 1, k1, ka; t)) have poles of order n at each
yi = 1.

Proof: In each of the integrals (7), (8), (9) and (10) multiply by (1 — y;)™ and
take the limit as y; — 1. And in (7) and (8) multiply by (1 — z;)" and take the
limit as z; — 1. ]
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3. C in the 3 x 3 case

To help make the concepts of the previous section more clear we reiterate them in
the case of 3 x 3 matrices before trying to describe denominators of the Poincaré
series. We will abbreviate C(3,k;t), R(3,k;t), C(3,k1, k2;t) and R(3, ky, k2;t)
by C(k), etc., suppressing the 3 and the ¢ since this is the only case we deal with
in this section.

Up to conjugation there is only one involution on M3(C). For convenience, we

will take the involution to be

a b e\ e b h
d e f =|d a g
g h 1 f ¢ i

The orthogonal group O(3) will consist of those matrices g such that gg* = 1,
and SO(3) will consist of matrices g with gg* = 1 and det(g) = 1. The algebra
T of all diagonal matrices in SO(3) consists of the matrices of the form

z 0 0
g=10 27t 0},
0 0 1

for z € C*. If X, is a generic matrix, then we calculate

i i i i 2, e
Tii T2 T3 Tii,. 2T T3

] 1 7 -1 _ —2,.0 ) V1.1
gy T T2 Taz 9 = | 2 15”21 Tag 2 T3

2 Y] ¥ ~ 1 —pt Y]

T31 T3 P33 2 "X3; 2Tag T33

for g € T. It follows that the polynomial algebra (C[acfx’ﬁ] has character

H(l - ti)_3(1 - ZZti>_1(1 - Z_zti)—l(l - Zti)_2(1 - Z—lti)—2.

%

Weyl’s integration formula now implies that the Poincaré series P(C)(t1,. .., )
is equal to
1 1-2)(1-271 dz

(11) - .

2(2mi) Jyzjon TTE (1 — 4)3(1 — 228) (1 — 272;)(1 — 24;)2(1 — 27 18;)2 2
For R (which we will compute in the next section) we need to calculate the action
of g € T on each af; €sts where eg; is a matrix unit. We leave it to the interested
reader to show that this multiplies the numerator by (1 + z + z~1)? giving a
numerator of (2 — 2% — 273),

Our goal is to apply Cauchy’s theorem to evaluate the Poincaré series.
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This turns out to be somewhat easier to do for the *-Poincaré series. We now
calculate the action of a diagonal matrix in SO(3) on a generic symmetric matrix
and a generic skew symmetric matrix:

531 31:12 31:13 3i11< 2Psly  zsiy
g| 85 sl shs gl = 2738y sty 2Tlshy |,
S33 S1g i3 z7lsh; sl 233
i1 0 13 ki 0 zkis
gl 0 Ky Ky )g'= 0 —ki;, 27k,
—kis —kis O —z kb, —zki, 0

It follows that the character is

ki
H(l — )21 - 227N - 27 k) TN — ) TN - 2 ) !
i=1

k2
<[] =9:)7 @ = 2a) 7@ = 27 ) 7
i=1
We can now use Weyl’s integration formula to calculate the *-Poincaré series

~ 1.
P(C(klakZ))(xh- s Tk Y1 e 'ﬁykz) = 5(27{2)—1'
(1=2)(1 -2 dz

Jzl=1 Hf’;l(l—mi)2(1—z2zi)(l—z‘za:g)(l—za:,-)(l-—z’lzti) z
12, (- (1—2ps) (1—2—192)

(12)

[N

1
1 — z — -
y2==xxf, 2 =%z, 2,

The integrand has simple poles at each z = z;, 2 = z;
z=1y; and z = yi_l. If k; = 0 and k3 = 1 there will also be a pole at z = 0.
This Poincaré series can be derived from the others and we can disregard it here.
Since the z; and Y have norm less than 1, the poles inside the unit disk will be

at z = z;, z = +z? and z; = y;. For convenience, we denote the integrand by I,

I =

(1-2)1-=Y 1
Hf__lzl(1—z,-)"’(1—22:c,-)(l—z‘zzi)(l—zmi)(1—z‘lzi) z
142, -y (1—2y:) (122 9:)

It is now easy to calculate each of the residues. At z = x; we have

lim (z — ;)] =
Z=x;

(1-z)(1 -z
[1EL, (1—25)2 (1=adx;) (1-27 225) (1—zi;) [, (1—] ")
Hfil(l—yj)(l—wz‘y;‘)(l—@i—ly;‘)

(12.1)

¥
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L . .
at z = +x? the residue is

1
lim (zxz2?)] =
z—»:l:xi%

1 -1

LaFah)aFa?)

-1

H;;l(l—zj)z(l—m'mj)(lq:m%xj)(1421- x])Hj#i(l—zi’lmj)

1 -1

H (1 —Y;) (I:szy,7>(1:Fm 2 ;)

(12.2)

b

and, finally, at z = y; we have the residue

Jim (= — i) I =
(1-w)(1-y)
(12'3) k1 2 2 -2, s 1,3
Hj=1(1_'EJ) (1_yi Ty )(1—9,- iﬂ])(l-yﬂJ)(l—yi IJ)

152, —v) vy [T, (-7 M)

So, the Poincaré series of C (k1, k2) is the sum of these fractions. In practice, this
sum may be very difficult to do. However, Theorem 6 implies that the sum will
be a rational function in the x; and y;; and that the denominator will divide a
product of terms of the form (1 — m), where m will be a monomial in the z;’s
and y;’s. We can use this information to calculate a denominator and to prove
that it is minimal.

COROLLARY 11: P(C(ky,ks)) can be expressed as a rational function with
denominator

ky
[Ta-zoa-a)a-z}) [I Q-1 - adz;)(1 - wixf)
=1 1<i<j<h
k1 ko
H (1= yiy;) H H(l —ziy; ) (1 — a:,yf)
1<i<j<ks i=1j=1

Proof: By Theorem 6, we need only consider the factors in the denominators of
(12.1), (12.2) and (12.3) which divide (1— a monic polynomial). At the z = z;
%z;) and (127 'x;) for i # j. At the z= ixl residue
we rationalize the denominator to replace the factor of (1 F :c])(l F z; ‘xj)

by (1~ z23)(1 - z; 11']2), and the factors of (1 ¥ z; y])(l Tz . ) by

(1 —ziy?)(1- x_l y7). By Theorem 6, we may then ignore the terms (1 —z; 2)
(1- x'ly]z), and (1 —x; xj) for ¢ # j. Finally, at the z = y; residue terms,
we may ignore each (1 — y; 2x;), (1 —y;7'x;) and (1 — y; 'y;). Also, in these

terms note that each y; has a pole of order one at each of 1 and —1. Taking the

residue, we exclude (1—z;
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least common denominator of the remaining terms gives the desired denominator.
|

LEMMA 12:
(a) P(C(2,0)) =

1+ z?x3 + xird
(1=21)(1 ~ 2} (1 — 23)(1 — 22)(1 — 25)(1 — 23)(1 — 2122)(1 — 2F22)(1 — 2123)

1 —z1y; + oiyi
(1-=z1)(1 —lﬁ)(l — 21 -y) (1 - 21y1) (1 - m1yd)”

(1- y%)(l - 1/%)(1 —y1y2)

(b) P(C(L,1)) =

(c) P(C(0,2)) =

Proof: Computation. |

THEOREM 13: The *-Poincaré series P(C(ky,ks)) can be written as a fraction
in lowest terms with denominator

k1
[[-z)-a-a8) [ (-1 -a2e;)(1 o)
1=1 151<]Sk1

k1 ko

H (1 - vy;) H H(l - ziy;) (1 — z3y)).

1<i<j<ks i=1j=1
Proof: By Corollary 11, we know that this polynomial is a denominator, and by
Lemma 12 we know that it is a least denominator in the cases of (k1, k2) = (2,0),
(1,1) or (0, 2). By specializing one of the variables to zero in Lemma 12, we also
know that the theorem is true in the case of (k1, k) = (1,0) or (0,1). Now, in
the general case, the denominator must be a symmetric polynomial and it must
divide the given one. But, if some factor was not present, we could specialize
some of the variables to zero (depending on which term was not present) to get
a smaller denominator in one of the cases (1,0), (0,1), (2,0), (1,1) or (0,2). |

We can derive a similar theorem for ordinary Poincaré series P(C(k)) using
Theorem 13.

THEOREM 14: The Poincaré series P(C(k)) can be written as a fraction in lowest
terms with denominator

k

i=1 1<i<j<k
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Proof: The *-Poincaré series and the Poincaré series are related by

PCK)(tr, ... ts) = PCh B (tr, - ot trs . te).

Hence, it follows from the previous theorem that the polynomial

k

[[a-tya-*a—ey [ -tt) -t -tt)

i=1 1<i<j<k
is a denominator for P(C(k)). This agrees with the denominator we are proving
except for the exponent of (1 — ¢;t;). So, consider the integral (11). The poles
inside the unit disk are at each z =t; and z = :l:ti% . The latter are simple poles
and only contribute (1—t¢;t;) to the first power. However, z = ¢; is a pole of order
two, so in order to calculate the residue we must first multiply the integrand by
(z—1;)?, take the partial derivative with respect to t; and then set z = ¢;. Taking
the partial derivative and using the product rule will cause the (1 — #;2)? in the
denominator to be replaced by (1 —t;z)3, and after substitution this will become
(1—tt;)3.

This shows that the polynomial in the statement is a denominator for P(C(k)).
In order to prove that it is a least denominator, as in the previous theorem, it
suffices to prove that it is a least denominator in the case k = 2. The relevant
integral can be evaluated using Macsyma. The denominator is as claimed. The
numerator is quite messy {over 100 terms), but it can be verified that it has no

factors in common with this denominator. [ |
What can we say about the numerators? Let n(—)(¢1,...,tx) be the numerator
of P(=)(t1,...,tx) in lowest terms. Then our computation of the denominators

in this section lets us use the functional equations for the Poincaré series from
Theorem 9 to get functional equations for the numerators.

THEOREM 15: If each Poincaré series is written as a rational function with de-
nominator as in Theorems 13 and 14, then the numerators satisfy functional
equations

(1) n(CE)ET ot h) = £t - t) T R0 (C(K))(ty, - . ., tx). In particular,
it is of degree 11k — 7 in each t; and total degree k(11k — 7). The term of
highest degree is £(t; - - - t5) 157,

(2) n(Clkr k)Tt szt oy = (@, )i e
(y1---yk2)2_3k1"k2n(C_'(k1,kg))(;rl,...,xkl,yl,...,ykz) when ky > 1. In
particular, it is of degree 4k; +2ks —4 in each 1 and 3k, +ky — 2 in each y;
and total degree ki(4k1 + 2ky — 4) + k2(3k1 + ko — 2). The term of highest
degree is £(xy - - - xp, )1t —d(y, Ly SRtk =2,
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(3) n(c_’(ov kQ))(yl_l»"‘vykz) = :t(ylv"'7yk2)2—k2n(0(07k2))(y11---vykz)
when ko > 2. In particular, it is of degree ko — 2 in each y; and total
degree ka(ky — 2). The term of highest degree is +(y1 - - yx, ) 2.

Proof: Each numerator is the product of the denominator times the Poincaré
series. Theorems 13 and 14 imply that the denominators satisfy functional equa-
tions of the given type. Theorem 9 implies that the Poincaré series satisfy func-
tional equations except for the ko = 0 case. However, since the Poincaré series
equals the sum of (12.1), (12.2) and (12.3), it must satisfy

-1 -1 ,-1 -1
I {CE P TN

= (_1)k2+1(x1 o ‘xk1)6(y1 o ‘Z/kz)3p(331, ey Theys Y1, - ',yk:g)'

The functional equations for the numerators follow. As for the degrees, each
Poincaré series is monic and each denominator is monic, so the numerator must
be monic. The degree now follows from the functional equation. |

4. R in the 3 x 3 case

The case of P(R) is similar. In this case

P(R(k1, k) = %(27ri)_1><
(13) 7l{ (1= 2)(1=2"D)(1+2+2"1)2

2=t [, (=22 (1=222:) (1-2~22:) (1 224) (1—2~ L2s)
[152, -y (1—zy:) (1—2= 1)

-
&
z

If 3k + kg > 4 we avoid poles at z = 0 and, again, the only poles inside the
unit disk will be at z = x;, z = +2% and 2z = yi- S0, the residues will be:
At z=z;:

(L—2)( —ay Y+ +ay)?

13.1 ‘
( ) H;n:l(1—11)2(1—1?11)(1_’%—2%)(1—&'%‘)Hj#i(l—xi_lxj)
H;i1(]_yj)(1—ﬂfiyj)(1—;vi_1y]-)
1
At z =2z
3 . i —3\2
(13.2) (AFa?)1Fe;] )(1Ea? £, %)

1 _1 -
Hfil(l—a:j)2(1—rirj)(1:in2 z;)(1Fe, 2a;)? ]’[J_#u—x;‘xj)

1 -1
[1}2, 0-v)(1Fef v,) 0Fe; 2y;)
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And at z = y;:

. (1-g)(1 -y Aty +y7)?
(13.3) m — —
[1;L, (1=2)2(1~gPe;)(A-y; " 2) (A—yez; ) (1~y; ' 25)
152, 0y A=piy) T], . (0-v M)
Examining the cases the reader will notice that, in (13.1) there is a factor of
(1+x; +2?) in the numerator which reduces the factor of (1 —z?) in the denomi-
1
nator to (1 —z;); and in (13.2) there is a factor of (1ta? 4+ ;) i in the numerator
which reduces the factor of (1— x2 ) in the denominator to (1F 2 ) Taking these
cancellations into account gives this analogue of Corollary 11:

COROLLARY 16: P(R(k1,kz)) can be expressed as a rational function with
denominator

ky
[Ta-=a-2}) [ -z -2iz)(1 - ziz3)
i=1 1<i<j<k
kl ko
[T =wu) [TTLA -z (1 = ig)).
1<i<j<ks i=1j=1

Here is the analogue of Lemma 12:

LEMMA 17:
(a) P(R(2,0)) =

1+ 2130 + x2x3
(1 —2)2(1 = 2)(1 = 22)%(1 - 23)(1 — @122) (1 — xiwe) (1 — 2123)

= (A+y+y])
(b) P(R(1,1)) = .
)= A== D= D0 — )1 o)
1 2
(C) P( (O 2)) +yl+y2‘_"y1 + y192+y2+y192+y1y2
(1 -y -y~ y1y2)
Combining these two results gives Theorem 18, and Theorem 19 follows with
a bit more work.

THEOREM 18: The *-Poincaré series P(R(ki, k2)) can be written as a fraction
in lowest terms with denominator
k1
H(l —z)*(1 - 23) H (1 - za;)(1 — zfz;) (1 — zg2)
i=1 1<i<j<ky
ki ks

I a-wy) TTTIC - 2oy — ziy?).

1<i<j<k2 i=1j=1
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THEOREM 19: The Poincaré series P(R(k)) can be written as a fraction in lowest
terms with denominator
k
[Ta-tPa-2? I a-tt)*@ - a1 -t
i=1 1<i<ji<k
Proof: Taking k1 = ko = k and letting each x; and y; equal ¢;, it follows from
Theorem 18 that P(R(k)) can be written as a fraction with denominator

k
[Ta-t?a-?a-) J] a-tt)*@—tad)>(1—tt;)2
i=1 1<i<j<k

So, we need to eliminate the extra factors of (1 — t2) and (1 — #;¢;). The latter
can be handled as in Theorem 10. As for the (1 — #}), refer to (13.1), (13.2)
and (13.3). If we try to specialize each z; and y; to t; before adding, there is
no problem with (13.2), but (13.1) has a factor of (1 — z; 'y;) = = (z; — v:) in
the denominator and (13.3) has a factor of (1 — y7 'x;) = y; ' (v — «;), each of
which would become zero. Since these are the only terms which vanish if z; and
y; are set equal, it follows that if we add these two terms there will be a factor
of (x; — y;) in the numerator which will cancel this term in the denominator of
the sum.

Now, if we add (13.1) and (13.3) the denominator will have a factor of (1—y?z;)
which specializes to (1—#3), which cannot be cancelled before specialization. This
is the only such term and the source of the (1 — ¢7) that we need to deal with.
However, the numerator of the sum will be of the form (1+x;+x2) A+(1+y;+y?)B
and on specialization it has a factor of (1+¢;+¢2), turning the unwanted (1 —¢3)
in the denominator into the extra factor of (1 — ¢;) we need.

Finally, a Macsyma computation shows that this denominator is correct in the
case of k = 2 which shows that it is least possible in general. ]

In the general case we do not know P(C(k)) or P(R(k)) because we do not
know the numerators. In the case of k; = 0 where all of the matrices are skew
symmetric, we can get a complete description of P(C(0, k)) and P(R(0, k)) using
Schur functions.

THEOREM 20: (a.) P(O(O, k)) = Za’b,czo S(2a+2b+c’2b+c7c) (.1/1, L] yk)'

(b) P(R(0,k)) =

Z S{2a+2b+c,2b+c,c)(yl,~-~syk)+ Z S()\;,)\Q,/\g,)(yla"-’yk)
a,b,c>0 A1>A22> A3

+ Z S(/\1,>\2,>\3)(?/1»---,yk).

M >A2>Aa, A1
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Proof: (a) The integral (12) reduces to

?{ (1-2)Q1-27Y dz _
al=t [T, (1= 9) (1 — yiz)(1 — g2~ 1) 2

k 1 (1-2)(1-271) dz
H(l - yi) % 1 -
i=1 lel=1 [[i=; (1 = 9:2)(1 = y;2~1) 2
This latter integral can be expanded using Cauchy’s identity (cf. {FuH], A.13)
(1-2)(1-27Y
:(l_z 1_2 S/\(”“v S)\ y13 ’yk)~
[Ties (1 - 3:2)(1 = gs2™) Z

But, the Schur function S)(z, 271) is zero unless A has height at most two. Hence,
the integral can be expanded as a series in Schur function of height at most two,
and the coefficients can be calculated from the & = 2 case, which we calculated
in Lemma 12(c). It equals

A+ (U +y2) (1 = aye) ! Z( 1) Si(yi, y2) Zs,g(m,m
= Z Sitj.j yl,y2)

To get from this sum to P(C(0,k)) we need to multiply by [[,(1 — 3:)~! =
Y m Sm- By Young’s rule, the coefficient of Sy, A = (A1, A2, A3) equals

Z (—1)pa—ra

p=(p1,42)CA

Now, ¢ C X if and only if A2 < g1 < A and A3 < g < Ag. Hence the above sum

equals
A1 A2

M Az
DD D) AR S ST S SR
#1=Xp p2=A3 H1=Az2 #2=23
This sum will be zero if either Ay — Ay or Ay — A3 is odd. If they are both even,
it will equal (—1)*s(—1)*2, which will equal 1 since Ay — A3 is even.
(b) We need to evaluate Lemma 12(c) in terms of Schur functions for k = 2.
Again, we pull out the factor of (1 —y;)71(1 - y2)~!. Now

1+ +y+ui+ 20+ 3ty +yys
1T+ y1)(1+y2)(1 — y192) B
1 Yyi+
A+y)A+y)A —y1y2) (1 —yiy2)
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The first term is Zi,j(—l)iSHj,j(yl,yg), as in part (a). The second term is
Y Si+1,i(¥1,y2). The rest of the proof is an exercise in Young’s rule. |

Aside. The proof of Theorem 15 shows that in order to calculate P(3,0,k; s)

for all k it suffices to calculate P(C(3,0,2;t)) and that the general case follows
from properties of Schur functions. Likewise for R. This generalizes easily. The

ordinary Poincaré series P(C(2n + 1,k;t)) or P(R(2n + 1,k;t)) is completely
determined by the case k = 4n? + 2n, and P(C(2n,k;s)) and P(R(2n,k;s))
are determined by the case k = 4n? — 2n; and the *-Poincaré series would be
determined by (ki,k2) = (2n2 + 2n,2n?) in the transpose case and (ki, k) =
(2n? — 2n,2n?) in the symplectic case.

Here is the analogue of Theorem 15 for R.

THEOREM 21: If each Poincaré series is written as a rational function with de-
nominator as in Theorems 18 and 19, then the numerators satisfy functional
equations
(1) n(R(k))(tfl,...,tgl) = +(t;---t5)? "% n(R(k))(t1,...,tx). In particular,
it is of degree 9k — 9 in each t; and total degree k(9k — 9). The term of
highest degree is £(ty - -t;)%%9.
©2) n(R(ky, k))&l mghur s un) = E(m a2
(Y1 -+ Yy ) 30 P2 (R(Ky, k2)) (@1, - s Ty » U1, - - -, Yk,) When ky > 1. In
particular, it is of degree 4k +2ks — 6 in each x; and 3k, + ke —2 in each y;
and total degree kyi(4ky + 2ks — 6) + ko(3k1 + ko — 2). The term of highest
degree is £(x1 - - ap, )1 H2R2 =6 (g ...y, )BR1Hh2 -2,
3) n(CO,k2)) W'y Uka) = @11+ Uke) > 0(C(0, k)Y 1y - - - Uky) IF
ko > 2. In particular, it is of degree ko — 2 in each y; and total degree
ko(ks — 2). The term of highest degree is £(yy - -+ yg, )2 2.

5. 4 x 4 matrices with symplectic involution

We would like to imitate the arguments of the previous section for the case of 4x4
matrices with symplectic involution. The main obstacle is that the computations
are much longer. For example, to calculate P(C(kq, k2)) (again suppressing the
size of the matrices and the type of involution from the notation) we need to
evaluate the integral

numerator dzg A dz
denominator zy 21

(15) %(m’)‘? [Ta-=z)2Ja-w)
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where
numerator =(1 — z122)(1 — 2125 )(1 — 27 22) (1 — 27125 1)
x (1=20)(1— 7)1 - =25)(1 - 2%
and
k1
denominator = H(l — z1202)(1 — zlzglxi)(l — 27 zm) (1 — z;lzglxi)
i=1
k2
X H(l — z1209) (1 — 2125 ) (1 — 27 Y2aws) (1 — 2725 )
i=1

X (1—23y:) (1 — 27 %y:) (1 — 23y:) (1 — 237 %y;).

It seems strange, but rather than evaluate (15) directly, it turns out to be
easier to evaluate

(OREECIOR | (RO | (R f _tumerator 4z 4y

denominator z9 2

where the numerator is as in (15), but the denominator is given by

denominator =

H(l - legai) H(l - leglbi) H(l — /31_1ZQC1‘) H(l — Zi_lz_ldi)
(16) x [T = 2Re) TT = 225 [T = 2590 [ [ (1 — 252,

where we have replaced the z’s and y’s in the integral with independent variables
a through h, all assumed to be less than 1 in absolute value. A similar device was
used by Van den Bergh in his study of the case of matrices without involution
in [V]. Information obtained from (16) can be transferred to (15) by specializing
the new variables back to 2’s and y’s. (So, for example, some of the a; would
specialize to x's and some to y’s.) To simplify the computation of (16) we will
assume

(17) b; < \/h; < di foralli,j and k.

Since the result of (16) is a rational function, it certainly suffices to identify it
under this restriction.

LEMMA 22: If there are no poles at zero, then the integral (16) can be evaluated
by adding the residues at the poles (21,22) = (V' fi,b;v/fi), (\/eidj, \/dj/ci),
(VFisdi /VFi), (di/35.1//35), (cin/hijs \/B;) and (VFi, /).
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Proof: In the inner integral z; has poles inside the unit disk at b;z;, d;2; ! and
V/h;. Taking first 2o = b;2y, if we multiply the integrand by 2z — b;2; and take
the limit as zo approaches b;z; we get a fraction with denominator

H(l—b-a] )Hl—b‘b)H ch)H Tldiz?)

J#i

H(l —e;23 H (L— fiz7%) H(l —b2g;2%) H(l b7 2hiz7%).
i
The poles for 27 in the unit disk would be

Vdi/bi, /F, and /Ry /by,

but thanks to assumption (17) only /f; is possible. In this case z3 = b;\/f;.

Next, the residue at 29 = d;2z7 ! has denominator

[T —ad) TI - bid7 =D [T - esdiz) [T - di 7))
- ; -

J#i
H(l ~ ;1) H (1= fiz1 )H(l - g5d;27?) H(l — hid;%2}).
J J
Taking into account (17), there are three types of poles in the disk: 2, = 1/c;d;,
z = /f;j and 21 = d;,/g;. The respective z; values are \/d:/c;, d;/ V/fi and
1/\/@

Finally, in the case of z; = v/h; the residue has denominator

H(l—a;le Hl—b/\/‘zl)H(l—cﬂ/_z VI - a5/ VRt
H(l—e]zl Hl_fyzl H(l_g] H(hjhi_l)~
j

J#

This creates poles in the disk at z; = cj\/h: and z; = \/E . This completes the
proof, except for the technical remark that one should also consider the terms
with the square root replaced by the negative square root. In all cases this will
not effect the resulting residues and so we will ignore this point. |

It is easy to evaluate the residues in the lemma: Simply substitute 2; and z3
by the indicated values, deleting the two terms which would become zero in the
denominator.
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LEMMA 23: The *-Poincaré series P(C(ky, k2)) for the trace ring of 4x 4 matrices
with symplectic involution can be written as a rational function with denominator

IT a-viynys) [ 0-v2s2) [T @ -vvn)

j1#iz Js 711 <i2 J1#d2
J2<43
H (1 - x?yhyjz)(l - xiyjlyjz) H (1 - Iilxizyj)
51<72 i1 <da
I C-vvnv) TT -4 [T O -viwn)
J1<42<j3 J1#j2 J1<d2
H (1 =z, x4, H(l - af),
11<’Lg

where the x indices are understood to go from 1 to k, and the y indices from 1
to kg.

Proof: By Theorem 6 we know that the result of the computation will be a
rational function with denominator a product of terms which divide a monic
polynomial, and so we may ignore all terms in each summand not of this form,
confident in the knowledge that they will cancel in the sum. If we merely take
the least common denominator of the remaining terms, the result will not be as
claimed in the lemma. There would be an extra factor of [[(1 — z;). However,
Theorem 10 controls the order of the pole at x; = 1 and guarantees that this
term will cancel.

It would be quite tedious to read the complete computation of the denominator.
We will just show how to compute one of the terms as an example and the
interested reader may check the rest. If (21,22) = (\/c;d;, \/d;/c;), then when
we specialize we may let ¢; or d; be either an x or a y. There are therefore four
possible terms to consider. (Other cases will require fewer possibilities since the
variables e, f, g and h can only be specialized to y’s.) Because we will want to
refer to it later, we will do the case in which ¢; = x; and d; = z;. In this case
the numerator will become

1-2z)1-27)A~2z)(1 - 21)
(1= zrxs)(1 - 27 27" (1 - zgzp ) (1 — o5 ta).

Note that if I = J, then the numerator becomes zero and so we may assume in
this case that I # J. The denominator is

H(l —zgz)(1— zra; H(l TR H(l —z5lx;)

i#l it
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H(l — zyy;)(1— 25 y;) (1 — zry;) (1 — 27 ty;)

(1 —zrzgy;) (1 — 27 27 y;) (1 — zgzp 'y (1 - 25 2ry;).

The terms not involving inverses are (1 — zsx;), (1 — z7z;) and (1 — zrz5y;).
Since I # J each (1 — x,;,) will occur at most once in the product. If ¢ is I
or J then there will cancellation with the (1 — z) or (1 — z,) in the numerator.
Finally, taking into account the [T, (1—;)72 [1,(1—y;)~? outside of the integral,
the contribution to the denominator is

1—1(1_-Tz')1—[(1_111‘)2 H ~ Ti, Tiy) H H - Tiy Tig¥j)-
i j i1 <is i1<iz j

This divides the denominator asserted by the lemma. The remaining cases offer
few additional subtleties. |

COROLLARY 24: P(C(k,0)), the Poincaré series for the trace ring of the ring
generated by k symmetric 4 x 4 matrices with symplectic involution, can be
written as a fraction in lowest terms with denominator [[;(1—;) [];<;(1—z:z;).

Proof: In the proof of the previous lemma, if there are no y’s then we need
not consider any terms containing e's, f’s, g’s or h’s. And there is only one pole
which doesn’t: The one we actually computed in the proof of the previous lemma.
The denominator there is the one claimed. To see that it is a least denominator
we may calculate the Poincaré series in the case of k = 2. We get

P(C(2,0)) = (1 —z1) ' (1 —z) (1 = 2)) T (1 — 23) T (1 = zp) !
and this completes the proof. ]

We don’t have the computational power to verify that the denominator of
Lemma 22 is a least denominator in general. In order to do this, one would need
at least to calculate the cases of (ki, k2) = (0,3),(1,2) and (2,1). Here are some
cases we did calculate:

LEMMA 25:
(a) P(C(2,0)) = (1 —z1za) M1 —a) 1A — 23) (1 —z) 7 (1 — )™
(b) P(C(1,1)) = (1-z%y?) 11—y (1—2y®) ' 1-9H) 1 (1-2?) "1 (1-2)7"
(c) P(C(0,2)) =
1—ylys — y1v2 +yiys +yivd + 20505 +uivs — i —hus + y1y2

(1 ylyg)(l_yi;y?)(l_ylyz)(l yl)(l yz)(l y1y2)(1 ylyz)
(1-y1y2)(1-9)(1-v3)




Vol. 134, 2003 MATRICES WITH INVOLUTION 119

Note that the denominator (c) is in agreement with Lemma 22 and that (b)
has a factor of (1 + z) missing.

To do the case of R instead of C' we need to multiply (15), and therefore (16),
by (21 + 22 + 27 ! Zy 1)2, which changes the numerator to

(1= 2{25) (1~ 2125 ) (1 = 27 225) (1 = 27225 ) (1 — D) (1= 27 %) (1 = 23) (1 - 23%).

It turns out that this tends to make all of the computations a bit easier by causing
more terms in the denominator to cancel. Lemma 22 still holds in this case. Here
are the analogues of Lemma 23, Corollary 24 and Lemma 25:

LEMMA 26: The *-Poincaré series P(R(ky, k2)) for 4x 4 matrices with symplectic
involution and trace can be written as a rational function with denominator

T a-viunun) T] @ -dws) [T Q- 22wu)

J1#j2 i3 J1#j2 Jj1<J2
J2<3i3
IT Q==ziyw) [T O - 2i2i9) IT Q-vvnys)
71<s2 i1 <iz J1<j2<ds
H yj1 y]z) H —Yi yjz
J1#d2 J1<]2
IT =2z []( = ) [TA - 22 I - 921 - w5),
i1 <ip 4, i J

where the x indices are understood to go from 1 to k; and the y indices from 1
to kQ.

COROLLARY 27: P(R(k,0)), the Poincaré series for the ring with trace generated
by k generic symmetric matrices, is a rational function with least denominator

[T (1 — )21, (1 — zazy).

LEMMA 28: (a) P(R(2,0)) = (1 — 1) 72(1 — x3)"2(1 — zq22)" L.
(b) P(R(1,1)) = (1 - 2) (1 - y) 7 A = y*) (1~ zy)~ (1 —2y®)~".
(c) P(R(0,2)) =

1+ yiy3
(1=y)(1-y2)1-y1) (1 -y3) (1~ y192)* (1 ~vy2) 1 ~1193) (1 - y3y2) (1 - y193)
(d) P(R(2.1)) = (1 - 219®)71(1 = 229®) 7M1 = z1way) 11 = z12) 7!
X(1=21y) (1 = 22y) A = y?) 71— y) (1 - 20) 721 - 3) 72
Note that the results in Lemma 28 agree with Lemma 26. We go so far as to
base a conjecture on this.
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CONJECTURE 29: If ks # 0 then P(C(ky,ks)) can be written as a fraction in
lowest terms with denominator

II a-vviy) [ A-vivd) [ Q-vvs)

j1#i2 ja J1<42 J1#d2
ja<is
H (1- m?yjlyj2)(]‘ - xiy]iyjz) H (1- xilxizyj)
J1<g2 i1 <ig
H (1- yjlijij) H (1- y]?lyjz) H (1- y.hyjz)
J1<j2<Js N1#d2 712
IT (= mi2s) [J (2 = 20,
i1 <is i

and P(R(ky,k2)) can be written as a fraction in lowest terms with denominator

T 0-vvnus) T O-vdun [T Q-fvnu)

J1#iz i3 J1#j2 J1<da
j2<i3

1T - zasus) ITa-zuzu) [I Q- vivinus)

1572 1<y J1<j§2<43
H (1 - yl?l yjz) H (1 - yj1yj2)2
Ji#j2 <jz

IT - ziz) [TQ - ziw) [JQ - 2 [T - 40 — ).
i1 <iz ] i J

If in P(C(k, k)) and P(R(k,k)) we set each x; and each y; equal to t;, we get
P(C(k)) and P(R(k)), respectively. These will be rational functions and, using
Lemmas 23 and 26, we can calculate denominators. We presume that these
denominators will not be minimal, but that they won’t be far off. In order to
express the result more compactly, we introduce some notation. Given a k-tuple
@, let A be the set of all permutations of a. Define [o] := [[gc4(1 — t?). For
example, if a = (2,1,0,...,0), which we will abbreviate as (2,1), then {2,1] =
ngi#jgk(l - t?tj); and if o = (1,1), then [1, 1] = H1§i<j§k(1 - titj).

THEOREM 30: The Poincaré series P(C(k)) can be written as a fraction with
denominator

[4°[3, 11712, 2°(2, 1, 1*(3](2, 1]*[1, 1, 1)7[2)°[1, 1]
and P(R(k)) can be written as a fraction with denominator

[3, 1172, 1, 17312, 111, 1, 1)"[21°[L, P[],
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We conclude by proving an analogue of Theorem 20 and express the Poincaré
series of C(k,0) and R(k,0) in terms of Schur functions. Two preliminaries are
needed.

LEMMA 31: The Poincaré series for each of C(k,0) and R(k,0) can be written
as [](1 — z;)? times a series Y m, S, in the Schur functions, in which each A has
height at most 4. In particular, the coefficients my are determined by the k = 4
case.

Proof: 1In each case, the Poincaré series is the integral of a fraction, with nu-
merator a function of z; and zo, and whose denominator is

k
H(l — )21 = 2120w (1 — 2125 P} (1 = 27 20m) (1 — 27 M2 b)),

=1

By the Cauchy identity, the integrand is the numerator times

H(l — ;)72 Z Sx(z122, 2125 1, 27 V2e, 27 2y D Sa (2, - - -, ).

i A

If the height of A is greater than 4, the first Schur function will be zero, and the
lemma follows. |

LEMMA 32: The Poincaré series for C(k,0) for k > 4 and the Poincaré series for

R(k,0) for k > 5 satisfy the functional equation

P(x7t,. ..,;1:,:1) = (x1-- -mk)GP(ml,. ey Tk)-

Proof: Consider the case of C'. The Poincaré series is given by the integral

k

1 . numerator

= 1—z2)2¢ ———dv
8 21;11( i) r denominator

where, as in (15), the numerator is

)
x(1=-2)(1 -2 - 251 - 27
and the denominator is

k
denominator = H(l — 21292 ){1 — zlzglxi)(l - zflz’gxi)(l - zl_lzglxi).

i=1
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There is a pole of order 4 at z; = 0 in the numerator and of order 2k — 1 (the 1
coming from the dv) in the denominator. Hence, under the hypothesis k > 4,
the fraction does not have a pole at z; = 0. So, to evaluate the integral we
need consider only the poles at z; = xyzq and at z; = x7/2;3. The two cases are
similar, so we will consider only the former. In this case the residue is a fraction
with
numerator =(1 — z723)(1 — z7)(1 — z;7 )(1 — 27125 %)
x(1- x122)(1 - zI Zy )(1 —23)(1 - 42_2)
and
denominator = H(l —arrizy)(1—2pe) (1 — 27 e) (1 — o7 w257%)
il
x(1- 351~2)(1 - 1"1)(1 - 2)-

Note that the (1—z; %) in the numerator and denominator cancel, so there are no
poles at zo = £1. Taking this cancellation into account, the pole at 22 = 0 is of
order 5 in the numerator and order 2k — 3 in the denominator. Hence, for k£ > 4
the fraction has no pole at z2 = 0. So, the only poles will be at 29 = ++/z;/z;s
for J such that xy > x 5. The residue will be the fraction with

numerator =(1 — z;)(1 — &;)(1 — 27 (1 — z5")
x (1 —zrzs)(1— 2727 — 2g/20) (1 — x1/z5)
and
denominator = H (1 — zyz)(1 — zpx)(1 — 27 ta) (1 — v /x:)
i£LJ
x (1 —zrry)(1—25)(1 —x5/21)
X 2(1 — z27)2 (1 — 2z )1 — x5 /z1).
We leave it to the reader to check that each such term satisfies the functional
equation claimed.

The case of R is similar, with the higher value of k needed because of the extra
factor of (Z -1 2a T 231)? in the numerator. |

THEOREM 33: (a) Given « and b, define even(a,b) to be the number of even
integers n, a < n < b and odd(a, b) to be the number of odds. Then the Poincaré
series of C(k,0) is given by th(x)<6 my Sy, where the coefficient my, is given by

5

5
my = H even(Ai41, A;) + H odd(Aig1, Ai)-
3=1

=1
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(b) The Poincaré series of R(k,0) is given by th()\)<6 my Sy, where the coef-
ficient m,, is given by
my = — XA+ 1)(As — Az + 1)(/\3 — M+ 1)()\4 - A5 + 1)(/\5 - As + 1)
Proof: (a) By Corollary 24, the Poincaré series is
flxzq,.. ,a:k)H 1—2) 2H(1+x1 1H 1—zz;)” L
i<j

for some polynomial f. It follows from Lemma 32 that for k¥ > 4, the numerator
f is of degree n — 4. Hence, if n = 4, the numerator is a constant, and it is not
hard to see that it must be 1. So,

P(xy,...,z4) = H(l-xl) 21—[1-+—:cZ 1l_I (1—a25)”
i<j
Applying Lemma 30, we turn to the computation of the product
H(l + ;)7 H (1-zz;)™"
1 1<j

in terms of Schur functions. It follows from [M], example 4, section 1.5, that this

equals
> (s,
ht(A)<4
and we need to multiply this by [T,(1 — ;)72 = (3, S(;))*. We multiply by the

two factors of ), S(;, one at a time. By Young’s rule, the coefficient of each S,
height 4 < 5, in the product 3, Sy 30, (=1)NSy is

Yootk Y (FDxex s Y (-
pe<vi<um pa<rz<pa ps<va<pg
Each sum is 0 or 1, depending on whether the difference p; — p1;_1 is odd or even,
respectively. Hence, the product is the sum )" S, summed over all p of height
at most 5 in which each difference p; — j1;_1 is even. So, either every part of p is
even, or every part is odd. We apply Young's rule to the product

> S > S
i u=(2a+e,2b+e,2¢c+e,2d+e,e)

The coeflicient of Sy in such a sum will be the number of i of height at most 5
such that each g, is between A;+y and )\, and such that either all parts of u are
even or all parts are odd. Formula (a) follows.
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(b) The second case is similar and a bit easier. In this case the functional
equation of Lemma 32 implies that the Poincaré series in five variables is
[1;(1—2)"2 [, ; (1 —2iz;)~". Tt follows from [M], example 5(b), section 1.5, and
from Lemma 31 that we need to compute (3, Si:))? Y osp S(asabp)- 1t follows
from Young’s rule that

25w Swapn = 3 S

a>b ht(n)<s
and also that
250 2. S
i ht(n)<s
is as claimed. |
References
[B] A. Berele, Matrices with involution and invariant theory, Journal of Algebra

135 (1990), 139-164.

[BS] A. Berele and J. Stembridge, Denominators for the Poincaré series of invariants
of small matrices, Israel Journal of Mathematics 114 (1999), 157-175.

[F1]  E. Formanek, Invariants and the ring of generic matrices, Journal of Algebra 89
(1984), 178-223.

[F2] E. Formanek, Functional equations for power series associated with n x n matri-
ces, Transactions of the American Mathematical Society 294 (1986), 647-663.

[FHL] E. Formanek, P. Halpin and W. Li, The Poincaré series of the ring of 2 x 2
generic matrices, Journal of Algebra 69 (1981), 105-112.

[FuH] W. Fulton and J. Harris, Representation Theory: A First Course, Graduate
Texts in Mathematics, Springer-Verlag, New York, 1991.

[G] A. Giambruno, GL x GL-representations and *-polynomial identities, Commu-
nications in Algebra 14 (1988), 787-796.

[HR] M. Hochster and L. Roberts, Rings of invariants of reductive groups acting on
regular rings are Cohen-Macaulay, Advances in Mathematics 19 (1976), 306-
381.

{L] L. LeBruyn, Trace rings of generic 2 X 2 matrices, Memoirs of the American
Mathematical Society 66 (1987), no. 363.

M] 1. G. MacDonald, Symmetric Functions and Hall Polynomials, second edition,
Oxford University Press, Oxford, 1995.

[P] C. Procesi, The invariant theory of n X n matrices, Advances in Mathematics
19 (1976), 306-381.



Vol. 134, 2003 MATRICES WITH INVOLUTION 125

[S] R. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics,
Vol. 41, 2nd Edition, Birkhiuser, Boston, 1996.

[T1}] Y. Teranishi, The ring of invariants of matrices, Nagoya Mathematical Journal
104 (1986), 149-161.

[T2] Y. Teranishi, Linear Diophantine equations and invariant theory of matrices, in
Commutative Algebra and Combinatorics (Kyoto, 1985), Advanced Studies in
Pure Mathematics 11, North-Holland, Amsterdam—New York, 1987, pp. 259—
275.

V] M. Van den Bergh, Explicit rational forms for the Poincaré series of the trace
rings of generic matrices, Israel Journal of Mathematics 73 (1991), 17-31.





