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I n t r o d u c t i o n  

Let A be an element of the general linear group GLn(C) and let X1 . . . . .  Xk be 

n × n (generic) matrices with algebraically independent indeterminate entries 
X i a,#, (~,fl = 1 . . . .  ,n,  i = 1 , . . . , k .  Then there is an action of GLn(C) on the 

Z i polynomial ring F = C[ ~,Z]~,#,i defined by: x ia,z is mapped by A to the (c~, fl) 

entry of AXiA -1. The fixed ring of this action is denoted C' and has a number 

of important properties. Let R be the algebra generated by the generic matrices 

X 1 , X 2 , . . . , X k .  Then one of the important properties of C is that it is the 

algebra generated by the traces of elements of R. It is not hard to see that 

has a k-fold grading by degree, and so there is associated to it a Poincar6 series 

Pk(C). It is known that Pk(C') is a rational function, and it has been computed 

in a number of cases. One important tool has been the Weyl integration formula 

which expresses Pk(C) as a complex integral 

(1) 1 fT 1-I_~l<c~#~<n (_______~1 -zazffl_____~) dr, 
Hik=l H : , f l = l (  1 - -  Z a z ~ l t i )  

where the integral is over the torus Iza] = 1, for a = 1 . . . .  , n, and the measure is 

d• = (27ri)-n dzl A dz2 A ... A dzn 
Z 1 Z  2 . . .  Z n 

We will say more about why this integral gives Pk (C) in Section 1 in which we 

will generalize it to the other classical groups. 

If we take the algebra/~ = RC' generated by generic matrices and their traces, 

we also get a ring of GLn(C) invariants. Consider the n x n matrices over 

C[x~,z]~,Z # with GL~(C) action obtained by the composition of the action of 

GLn(C) defined above with conjugation on matrices. Then the fixed ring is /~ 

and so it again follows from Weyl's formula tha t /~  has Poincar6 series which can 

be calculated as an integral. The integral is 

f T  -1  n ~ Z-1 1 1-Ii_<a##<n(_ 1--zaz___~)._ E~,Z=_____AI~ z dr. 
(2) II:,fi= (1 - 

In [T1], IT2] and [BS], (1) and (2) were used to calculate the Poincar6 series 

for C and/~  for (n, k) -- (2, 2), (2, 3), (3, 2), (3, 3) and (4, 2). (The case of 2 x 2 

matrices was also done in [F1], IF2] and [L] using more purely algebraic methods.) 

In [BS], the least denominator was also calculated for (3, k) and conjectured for 

(4, k). 
It is our goal in this paper to generalize this work from generic matrices to 

generic matrices with involution. For n odd the only involutions are of transpose 
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type, and for n even the involution may be of either transpose or symplectic type. 

Procesi showed in [P] that  the corresponding trace ring is a ring of invariants for 

either the orthogonal or symplectic group. It turns out in the symplectic and odd 

(but not even) orthogonal cases that the Poincar~ series can be calculated using 

Weyl's integration formulas. Consider for example the case of the symplectic 

involution on 2n × 2n matrices. The relevant integral is then 

(3) 2nn!l ~T I]l-<a<Z<n (1 ' '  H .  , [ I .  - ~ -  ~ -~" ~ "  ~ n - - - -  ~ - ' r " ~ ' ~  - -  4 - - 7 " 7 - 1 7 ~ - - -  Zag:l Z~ :1 ) " 1-Ia=l ( n  I - z~a 2) du, 

where T is the unit torus, as above. 

Not only may C and/~  be considered as a k-fold graded algebra, but they can 

also be given a finer 2k-fold grading. The algebra generated by k generic matrices 

together with their transposes is isomorphic to the algebra generated by k generic 

symmetric matrices and k generic skew symmetric matrices. These generators 

induce the 2k-fold grading. More generally still, given an involution on matrices, 

we may consider the algebra generated by kl generic symmetric matrices and k2 

generic skew symmetric matrices. This algebra will have a (kl + k2)-fold grading 

and a formal power series in variables x l  . . . .  , Xk,,  Yl . . . . .  Yk2" We distinguish this 

series by referring to it as the *-Poincar~ series. It turns out that  the analogues 

of C and /~  in this case are also invariants for one of the classical groups, and 

that  the integrals can be constructed to calculate the *-Poincar~ series as well as 

the Poincar~ series. 

In Section 1 we present the results we need from invariant theory and construct 

the integrals which we will be studying. In Section 2 we use these integrals 

together with the algebraic properties of the generic matrix algebras to prove 

some general results about the Poincar~ series and *-Poincar~ series. These 

results are all known in the case of matrices without involution, and are mostly 

new in the present case. The main results of this section show that  each series is a 

rational function and describes which type of terms can occur in the denominator 

(Theorem 6); give a flmctionat equation satisfied by these rational functions in 

some cases (Theorem 9); and, identify the orders of the poles at 1 for the *- 

Poincar~ series case, except for x+ = 1 in the symplectic case (Theorem 10). 

In Sections 3 and 4, we investigate the case of 3 × 3 matrices with transpose 

involution. For convenience, we do the case of C and /~  separately. Our main 

results in these sections are that P(C') can be written as a fraction in lowest 
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terms with denominator 
k 

l - I  ( 1 . t i ) ( 1 - t ~ ) 3 ( 1 . t 3 ) 2  r I  ( 1 - t ~ t j ) 3 ( 1 - t i t ~ ) 2 ( 1 . t 2 t . ~ 2  i 3 2 '  
i-~l l(_i(j~_k 

and that  P(/~) can be written as a fraction in lowest terms with denominator 

k 

I - [  (1 - ti)3(1 - t~)3 l '~  (1 - t i t j )3(1 - tit~.)2(1 - t~tj) 2. 
i=l  l(_i~j~_k 

We investigate least denominators for the *-Poincar~ series, and calculate each 

of the series in a few cases. As a corollary, we are able to calculate the character 

sequences for C'(0, k) and/~(0,  k). 

In Section 5 we work on 4 × 4 matrices with symplectic involution. For each of 

the Poincar~ series and *-Poincar~ series we calculate a denominator. We suspect 

that  it is not a least denominator, but is not too far off. We conjecture what we 

think the least denominator is in the *-Poincar~ case. 

1. Invariants and integrals 

For more information on the classical groups we refer the reader to [FuH]. Let G 

be one of the groups GLn(C), SP2n(C), SO2n(C) or SO2n+I(C), and let M be a 

G-module. The group G contains a Car tan subgroup H,  which we may take to be 

the set of all diagonal matrices in G. The character of M may be defined to be the 

trace of H on M, so the character will be a function of n variables. This character 

determines M up to G-isomorphism. In particular, it determines the multiplicity 

of each irreducible G-module in M and this multiplicity can be calculated from 

the character using integration. We will be interested only in the special case of 

the trivial character. As in the introduction, let T C H be the diagonal elements 

with entries of absolute value 1 and let dv be the translation-invariant measure 
1 dZl A . . . A  dzn 

dv = 
(27d) n Z l  . . .  Z n  

on T. Here is Weyl's integration formula. 

THEOREM 1 (Weyl): Given G, one of  the classical group as above, there exists 

a polynomial  P c  = P ( Z l , . . . ,  Zn) such that  ff  M is a G-module  with character 

f ( zl  , . . . , zn ), then ~T P f dv is the dimension of  the space of  G-invariant elements 

of  M .  

We now record the polynomials Pc.  Let 

Zn) := 1 ]  -- Z,) 
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be the Vandermonde determinant. If G = GL,~(C) then 

P(zl ,  Zn) =~.T A (Zl . . . .  z n ) A ( z l l , .  

1 
=~.V H (1 -- Zo~Z;1) .  

If G = SP2n(C ) then 

(--1)n A/ - 1  2 
P(z~ . . . .  , ~n) --Z-G~n,. ~ z ~  + zZ l  . . . ,  zn + zn ) (~1 -- z ~ l ) ~ . . .  (Zn -- z~ l )2  

1 n 
-- -- --Z~ ), 2nn! n (1 4 - 1 4 - 1 ,  

l_<c~<~<n a = l  

where we use the plus or minus notation, here and throughout, as a shorthand 

for H~,,~=+I(1 - z~ ~'b ) in the first factor and H~=+2(1 - z~) in the second. 

If G = SO2n(C) then 

1 
P(Zl . . . . .  Zn)  - -2n_ln!A(z l  + z l l , . . . ,  Zn -[- Z n l )  2 

1 
2~n! n (1 4-1_:hh 

- -  _ Z a z 3 ). 
l_<a</3<n 

Finally, if G = SO2n+I(C) then 

_ ( - 1 ) n A r ~  -1 ~- -½)2 .. (z~ - z~½) 2 P(z l  . . . . .  Zn) - -  2 ~ .  ~-~k~l ~- Z 1 . . . .  , Zn -~- Z n l ) 2 ( Z ~  --  Z 1 • 

1 iI 
l <c~<3<n  c~=1 

We will need Weyl's integration formula in the form of this corollary. 

COROLLARY 2: Let V be a vector space graded by l~  , 

v =  
c~ l ~...,c~ n 

such that each homogeneous subspace is finite dimensional. Assume that V is 

a G-module and that the action respects degree. Let V ( a l , . . . , a n )  have G- 

character f~ (zb  . . . , zn) and let 

F( t l  . . . .  ,tn) : :  E f a ( Z b . . . , z n ) t ~ . . . t ~ " .  
ce 
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Then the fixed ring V G has Poincard series equal to JfT PFdz/. 

Let F = F(N ,  k) be the polynomial ring in the variables xi,~, a, ~ -- 1 , . . . ,  N, 

i = 1 , . . . ,  k and recall the action of GLN(C) on F in which A E GLN(C) sends 

each x i to the (a,/3) entry of the matrix A X i A  -1, where Xi is the generic ' ( ~  

matrix with entries x i There is an action of GLN(C) on MN(F)  obtained by 

composing the previous action on F with the conjugation B --~ A - 1 B A .  The 

fixed ring F GLN(c) is the ring C = C(N, k) generated by the image of the trace 

map from the ring R = R(N,  k) generated by the generic matrices C[X1, . . . ,  Xk] 

to F,  and the fixed ring MN(F)  GL(c) is the ring/~ = /~(N,  k) generated by R and 

C. These facts are due to Procesi, and are equivalent to the First Fundamental 

Theorem of invariant theory for the general linear group. If N = 2n is even, then 

SP2n(C ) and O2~(C) are contained in GLN(C) and if N = 2n + 1 is odd, then 

02n+1(C) is contained in GLN(C). So, by restriction, each classical group has 

an action on F and on MN(F) .  
Up to conjugation MN(C) accepts one involution if N is odd and two if N is 

even. These extend to MN(F) .  Consider the algebra generated by the generic 

matrices X1 . . . . .  Xk together with their images under the involution, X ~ , . . . ,  X~. 

If the involution is transpose type, we will denote this ring by R(N,  k; t) and if 

it is of symplectic type, by R(N,  k; s). The commutative algebras generated by 

the traces will be denoted C(N, k; t) and C(N, k; s), and the non-commutative 

algebras with trace generated by the generic matrices will be denoted/~(N, k; t) 

and/~(N,  k; s). The next theorem is from Procesi's seminal paper [P]. 

THEOREM 3 (Procesi): Let F -- F(N ,  k). Then 

(1) i f  N = n, then F GL~(¢) = C(n, k) and Mn(F)  GL~(¢) = [~(n, k); 

(2) i f  N = 2n, then F °2~(c) = C(2n, k; t) and M2n(F) °~(c) = R(2n, k; t); 
(3) i f  N = 2n, then F Sp2~(c) = C(2n, k; s) and M2n(F) Sp~(c) = / ~ ( 2 n ,  k; s); 

(4) i f  N = 2n + 1, then F °2~+'(c) = C(2n + 1, k; t) and M2n+I(F) °2~+~(c) = 

/~(2n + 1, k; t). 

Aside .  Procesi also related each C' and R to an algebra of simultaneous 

invariants of matrices. Consider a map F: Mn(C) k --+ C. Such a map will be 

called G-invariant if 

F(gAlg  -1, gA2g-1 , . . . ,  gAkg -1) = F(A1, A2 . . . .  , Ak) 

for all g C G and all A1 . . . . .  Ak C Mn(C). The set of all G invariant maps which 

are polynomial in the entries of the matrices forms an algebra, and Procesi's 

theorem says that this algebra is isomorphic to the appropriate C'(n, k; - ) .  If we 
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instead consider the invariant maps from Mn(C) k to Mn(C) we get an algebra 

isomorphic to /~(n,  k ; - ) .  

In (4) note that  the odd orthogonal group O2n+1 (C) is the direct product of the 

special orthogonal group SO2~+1(C) with the two element group generated by 

the scalar matrix - I .  Since the action is by conjugation - I  acts as the identity so 

the O2n+1(C) invariants are the same as the SO2n+I(C) invariants. In the case of 

O2n(C) we don't  know of a similar reduction. Although the SO2n(C) invariants 

may be of intrinsic interest, we choose not to compute them here because they 

don't  relate directly to C(2n, k; t) or /~(2n, k; t). Combining Theorem 3 with 

Corollary 2, we may express the Poinca% series of each C and/~,  except for the 

even orthogonal case, as an integral, once we compute the character of each F 

and MN (F). The case of the general linear group was the subject of IV] and is 

included here only for the sake of completeness. 

LEMMA 4: Given n and k, the characters o fF  = F(N, k) and MN(F) are given 

by 

(1) F has GL~(C)-character 

k 

II fI 
i=1 o~ J3= 1 

and Mn (F) has GLn ((2)-character equal to the character of F times 

a , / ~ = l  - -  - -  

(2) F has Sp2n(C)-character and S02n(C)-character equal to 

i=1 a,fi=l 

and -~I2n(F) has character equal to the character o fF  times 

(:~ + z2 ~) . 
a=l 

(3) F has S02~+a(C)-character equal to 

n fI  U [  U ( 1 - " ± ' z ~ l t i )  -1 ( 1 - 4 - 1  --2 ~ t~) (1 - t~-l)] 
i = 1  a~=l a = l  
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and M2n+I(F) has character equal to the character o f F  times 

1 + (z~ • 
0c~1  

Proof: Consider first the case of F. Let D be the diagonal matrix with entries 

, -1  in the cases of z l , . . . ,  Zn in the case of GLn(C); entries zl . . . .  , z~, z[-1, . . . ,  ~n 

SP2n(C ) and SO2~(C); and with entries z l , . . . , z n , z ~  1 . . . .  , z~ l ,1  in the case 

i of F is an eigenvector for D under the of SO2~+1(C). Each generator x~,~ 

action. Computing the eigenvalues gives the characters of F as claimed. For 

MN(F)  -- MN(C) ® F we multiply the character of F times the character of 

MN(C). In MN(C) each matrix unit e~,~ is an eigenvector and the result follows 

from an easy computation. | 

We may now express each of the Poincar~ series as a complex integral over the 

torus Iz~] -- 1, i = 1 , . . . ,  n with respect to the translation invariant measure du. 

P(C(2n,  k; s)) = 

T N (1 ~ ± l z ± l ~  1-1 n [1 ±2 1 l l l ( a ( D < : : n \  - - ~ a  ~ ] l l a = l l ,  l -  Za 

lli-----llla,/~=lk - -  a ~ f l  i /  

P(/~(2n, k; s)) = 

1 f I ' I i ~ a < ~ n ( 1  ±1 _ ± h  n ±2 n Z - -  - -  Za ) ( E a , ~ = l (  a -It- Za-1) )  2 J l-L=1(1 
(4) ~ fT  du, k n 1 z + I z + l t  l-L=1 [L ,B=I (  - 
P(C'(2n + 1, k; t)) = 

l-I" {1 ~±1 ~q-l~ l-In (1 ~:t=l~ 

k ~ ----y-+y~-yi-~,~---W--;-:~ ----~I~--~ 1 _ dr, 
(5) 2an!., H~=1(H~,.=l(1 - z~ z z td  H~=I(1 - z~ td ( ti)) 

p(/~(2n + 1, k; t)) = 

ST ~::klv:kl n q-I 1 n - I  2 1 1-II<~<Z<n( 1 - ~a ~b ) l-L=1( 1 -- Za )( + E a = l  (Za ~- Z°~ )) dr. 
(6) 2nn---~. - i l k  -(rln t l  z ± l z ± l  t l l i=lkl la ,f l ---- lk - -  a ~ i ]  1-In=l(1 - z~lti)2(1 - t i ) )  

In the case of matrices with involution the Poincar~ series may be refined to 

the *-Poincar~ series. The algebra with trace generated by k generic matrices 

together with their transposes may equally well be thought of as the algebra with 

trace generated by k generic symmetric matrices and k generic skew symmetric 

matrices. This induces a 2k-fold grading on the algebra and on the algebra of 

traces. The corresponding Poincar~ series is called the *-Poincar~ series. From 

the point of view of characters, when we pass from a k-fold grading to a 2k- 

fold grading, we are passing from a GLk(C)-character to a GLk(C) x GL~(C)- 

character. This theory is discussed in [G]. 
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More generally, given a set of generic n × n matrices {X~} together with their 

transposes of some type {X~} we may let S~ = X~ ÷ X* and K~ = X~ - X* 

be generic symmetric and generic skew symmetric matrices, respectively. For 

fixed kl and k2 let R = R ( n ,  kl ,  k2; s or  t)  be the algebra with trace generated 

by S1 , . . . ,  Sk~, K 1 , . . . ,  Kk~; let C = C(n, kl, k2; s or t) be the algebra generated 

by the traces or elements of R; and let /~ = /~(n, kl, k2; s or t) be the algebra 

generated by R and C. Also, let F be the commutative algebra generated by 

the entries of S1 , . . . ,  Ski, K I , . . . ,  Kk~. The following is a corollary of Procesi's 

theorem. 

LEMMA 5: W i t h  no ta t ion  as in the  prev ious  paragraph,  F g = C a n d  M n ( F )  G = 

[~. 

Equations (7) and (8) below follow from corollary 7.3 of [B]. Equations (9) 

and (10), although not explicit in [B]~ are similar. 

1 
C(2n, k l ,  k 2 ;  8 ) ( x  1 . . . .  , X k l ,  Y l , -  - ",  Yk2 ) = 2nn~--[. X 

~T r~ ~1 ~±1 ~±1". r ~ n  [ 1  ~4-2 \  -- lll<a<~<n~ --~a ~ ) l l a = l t  i - ~ a  ) a u  
( 7 )  ~ -  --r-:, . . . .  , - Z T ~ , ± , m  ' 

y L = l { l " I a , # = l  ( 1 - - z a  z fl xl)l-L<a<,<n(1--(zaz#) x , ) }  

1 
/~(2n, kl, k2; 8)(Xl . . . . .  Xkl, Yl . . . .  , Yk2) = 2nn! × 

/ T  r~ z 1 ~-4-1~q-h n n  ~1 ~±2~lx"~n ~ - -  ~ - - 1 ~ 2 - -  

YI~I {yIn ~=I(1--zo~zBlyi) YII<c~K~<n (1--(zazB)±lYl)} 

C'(2n 4- 1, kl, k2; t ) ( z l , . . . ,  X k l  , Y l , . . . ,  Yk2) = 

1 kl / "  numerator 
(9) 2 a n !  l - I ( 1  - -  Xi) -1  )V T - -  du, denominator 

i = l  

where 

numerator = 
n 

l-[ (i 
l _ ~ c ~ < / ~ k  ~ = 1  
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and 

kl{n denominator = H (1 - z ,z~'xi )  H (1 - (z~z~)+ixi) 
i=1 o~,fl=l l<aKfl_<n 

:t:1 x l - I (1  - z a x~) (1 - zaz; ly i )  
c~----1 i = l  c~,fl=l 

n } 
x H (1 --  (Zc~Zfl)4"lyi) H (1 --  Z~alyi) , 

l_<a<fl_<n c t = l  

/~(2n + 1, kl, k2; t) ( X l ,  . . . , X k l  , Yl . . . .  , Yk=) = 

1 kl fr (10) 2nn! 1-I(1 - x i ) - I  denominatornUmerat°r du, 
o~=1 

where 

n n 

numerator = l-I  (1 ~ i l  ~±i'~ - - z~ )(1 + E ( z ~  + z ~ - l )  2 )  

l<c~<fl<k a = l  a = l  

and ki{0 
denominator = H (1 - z,~z~lxi) 

i=1 ch --1 

n Z ± 1  , ~  
z H (1 - ( z ,~zz )± ix i )  H (1 - ~ xi) ;  

l<a<fl<_n a = l  

k2 { n 

H H (1- ze~zfllyi) H (1 --(Zo~Z,):klyi) 
i=1 a , f l= l  l < a < f l < n  

Aside .  The algebras C'(n, ki, k2; - )  and/~(n,  ki, k2; - )  also have an interpre- 
tation in terms of G-invariant maps. Instead of all maps from Mn(C) k to C 
or Mn (C), we consider the algebra of G-invariant maps defined on the set of all 
kl + k2-tuples of matrices, the first kl of which being constrained to be symmetric 
and the last k2 being constrained to be skew symmetric. 



Vol. 134, 2003 MATRICES WITH INVOLUTION 103 

2. G e n e r a l  p r o p e r t i e s  

A number of generM properties of the Poincar~ series for generic matrices have 

been derived from the algebraic properties of these matrices and from properties 

of complex integrals. Almost all of these arguments can be adapted to our more 

general setting of matrices with involution, and that  is the goal of this section. 

These properties will be useful in the subsequent computat ion of the series in 

individual cases. Our first theorem follows from algebraic considerations. 

THEOREM 6: Each of  the Poincar~ series and *-Poincard series for each C and 

(without  involution, or with either type o f  involution) is a rational function. For 

the Poincard series, the denominator  can be taken to be a product  o f  terms of  

the form 1 - t ~ and for the *-Poincard series case, the denominator  can be taken 

to be a product  o f  terms o f  the form 1 - x~y  ~. 

Proo~ Since the classical groups are all reductive, it follows from the Hochster-  

Roberts theorem [HR] that  C, their algebras of commutat ive invariants, are 

graded Cohen-Macauley. Theorem 6 now follows in the case of C from Stan- 

ley's theorem, see IS]. For the Poincar~ series of /~  we use the observation that  

the map f ( X 1  . . . .  , Xk )  ~-~ t r ( f ( X 1  . . . . .  X k ) X k + l )  is a vector space isomorphism 

of/~(n,  k) with the part  of C(n,  k + 1) of degree 1 in Xk+1. It  follows that  

0 
p(R(n, t:)) - k + 1)lxk+,=0. 

OXk+l 

The *-Poincar~ series case is similar. The algebra /~(n, k) is the vector space 

direct sum of its symmetric and skew symmetric parts. Let f ( X 1 , . . . , X k )  be 

a symmetric matrix. Then we map it to t r ( f ( X 1 , . . . ,  Xk )Sk+l )  in the orthogo- 

nal case and to t r ( f ( X 1  . . . .  , Xk)KA:+I) in the symplectic case. And we do the 

opposite for skew symmetric matrices. It  follows that  

xkl+, =° i )C(kl ,  k2 + 1; - )  Yk2+, =°" R(Tt, kl, k2; - )  ~-~ 0C(]~l + 1, k2; - )  + .  | 
Oxk~ +1 OYk2+l 

COROLLARY 7: /i f P(C') can be writ ten as a fraction in which 1 - u occurs in 

the denominator  with mult ipl ici ty a, then P([~) can be writ ten as a fraction in 

which 1 - u occurs in the denominator  with mult ipl ici ty at mos t  a + 1. 

We have observed that  if u is a monomial of degree at least 2, then 1 - u 

occurs in the least denominator of each P (C)  and corresponding P(/~) with 

equal multiplicity. We conjecture that  this will always be the case. 



104 A. BERELE AND R. M. ADIN Isr. J. Math. 

THEOREM 8: Each Poincar4 series is a symmetric function in the t variables, 

and each *-Poincard series is a symmetric function in the x variables and in the 

y variables (separately). 

Proof: Clear. II 

THEOREM 9: Let P ( t l , . . . ,  tk) be the Poincard series for C, either with or with- 

out involution, and with k >_ 2, and let N = 2n or N = 2n + 1 be the size of the 

matrices. Then P satisfies the functional equation 

P ( t l  1, -1 • . . , t  k ) = (--1)d(tl  " ' ' t k ) N = P ( t l , . - - , t k ) ,  

where d is k n + n +  l in the case of matrices without involution, k + n  in the case of 

transpose-type involution, and n in the case of symplectic involution. Likewise, 

let P ( x l , . . . ,  xkl, Yl , - . - ,  Yk2) be the *-Poincard series for C, and assume that 

kl + k2 >_ 2; and that k2 >_ 1 in the symplectic case and ks >_ 1 in the orthogonal 

case. Then 

P ( x [  . _ ,  "" ' kl 'Yt . . . . .  Yk~ ) 

= ( _ _ l ) d ( x l . . . X k l ) a  ( Y l " ' Y k , ) e P ( x * , ' - ' ,  Xk~, Y l , ' " ,  Yk= ), 

where (d, a ,  ~) is (n(kl + k2 + 1), 2n 2 - n, 2n 2 + n) in the symplectic case and 

(n(kl + k2 + 1) + ks, 2n 2 + 3n + 1, 2n 2 + n) in the orthogonal case. 

Proof:  The  case of the ordinary Poincar6 series was proven by Teranishi in [T1], 

and the same proof  applies in the *-Poincar~ series case. | 

THEOREM 10: The *-Poincard series P (C(2n ,  kl, ks; s)) and P(/~(2n,  kl, k2; s)) 

have poles of order  n a t  each x~ = 1 and Yi = 1, and the *-Poincard series 

P(C ' (2n + 1, kl, k2; t)) and P(/~(2n + 1, ks, k2; t)) have poles of order n at each 

y i = l .  

Proof: In each of the integrals (7), (8), (9) and (10) multiply by (1 - yi) n and 

take the limit as Yi --+ 1. And in (7) and (8) mult iply by (1 - xi) n and take the 

limit as xi --+ 1. | 
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3. C' in  t h e  3 × 3 c a s e  

To help make  the concepts  of the previous section more  clear we re i tera te  t h e m  in 

the case of 3 z 3 matr ices  before t ry ing  to describe denomina tors  of the Poincar~ 

series. We will abbrev ia te  C'(3, k; t), /~(3, k; t), C'(3, ks, k2; t) and /~(3, kl,  k2; t) 

by C'(k), etc., suppressing the 3 and the t since this is the only case we deal with 

in this section. 

Up to conjugat ion there  is only one involution on M3 (C). For convenience, we 

will take the involution to be 

a b c e b h 
d e = a . 
g h c 

The  or thogonal  group 0 (3 )  will consist of those matr ices  g such t ha t  gg* -- 1, 

and SO(3) will consist of matr ices  g with gg* = 1 and det(g)  = 1. The  a lgebra  

T of all diagonal  matr ices  in SO(3) consists of the matr ices  of the form 

( 0i) g__-- Z - 1  

0 

for z c C × • If  X / i s  a generic mat r ix ,  then  we calculate 

xi31 Xi23 xi33 ~z--lx~31 zxi23 X~33 ] 

for g C T.  I t  follows tha t  the polynomia l  a lgebra  CIx~,~] has character  

l - I (1  - t i ) -3(1  - z 2 t i ) - l ( 1  - z - 2 t i ) - l ( l  _ z t i ) - 2 ( 1  - z - i t i )  -2 .  
i 

Weyl ' s  integrat ion formula  now implies tha t  the Poincar~ series P ( C ) ( Q  . . . . .  tk)  

is equal to 

1 f (1 - z ) ( 1  - z - 1 )  dz  
k (11) 2(27ri) i=1 YIi=l(1 _ ti)3(1 _ z2 t i ) (1  _ z-2 t i ) (1  _ z t i )2(1  _ z - , t i ) 2  z 

For /~  (which we will compute  in the next  section) we need to calculate the act ion 

of g E T on each x~a,/3est, where est is a ma t r ix  unit.  We leave it to the interested 

reader  to show tha t  this multiplies the numera to r  by (1 + z + z - l )  2 giving a 

numera to r  of (2 - z 3 - z -3) .  

Our  goal is to apply  Cauchy 's  theorem to evaluate the Poincar~ series. 
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This  turns  out  to be somewhat  easier to do for the *-Poincar4 series• We now 

calculate the  act ion of a diagonal  ma t r ix  in SO(3) on a generic symmet r i c  ma t r ix  

and a generic skew symmet r i c  matr ix :  

g 

g 18~: 8:1 S~31 g--1 : [Z--28~21 8~11 Z--18~231 ' 
\ 8~3  8:3 833 /  Z-18z23 Z8~13 Z~3 / 

( k~l 0 k~3)O ( k~l 0 zkil3 ) 
0 __kill k: 3 g--1 __kill z-lki23 . 

-k~3 -k~3 \ - -Z--1~3 -zki13 0 

I t  follows tha t  the character  is 

k: 
I - I (1  - x i ) -2 (1  - z 2 x i ) - : ( 1  - z -2x i ) - l (1  - z x i ) - l ( 1  - z - l x i )  -1 
i=l 

ks 
x H ( 1  - y~)- : (1  - zyi ) - : (1  - z - l y i )  -1. 

i=l 

We can now use Weyl 's  integrat ion formula to calculate the *-Poincar4 series 

1 (2~i)_:. P(C(k l ,  k 2 ) ) ( x l , . . . ,  xk:,  Y: . . . .  , Yk2) = 

(12) ~ z  (1 - z)(1 - z -1) dz 
I=1 I-I~: (1-~)2(1-~ ' ) (1-~-~x~)(1-~x~)(1-~- lxl)  z 

The  integrand has simple poles a t  each z = xi, z = x-l i  , z =  ± x ~ ,  z = ± x ~  ½, 
--1 z = Yi a n d z - - y i  . If  kl = 0 a n d k 2 - -  1 there  will also be a p o l e  at  z = 0. 

This  Poincar4 series can be derived f rom the others  and we can disregard it here. 

Since the xi and  y[ have norm less t han  I,  the poles inside the unit  disk will be 

a t  z = xi, z = ±x~ and zi = Yi. For convenience, we denote the integrand by I ,  

I = (i - z)(1 - Z -1)  i 
--. 

l-I~:(:-~)~(l-~'~)(l--z-~,)(l--~,)(l-~-:~) Z 

I t  is now easy to calculate each of the residues. At z = xi we have 

l im (z - x i ) I  = 
Z--+X i 

(12.1) 
(1 - x i ) ( 1  - x~ -1)  

I-V1 (1-xj)~(1-x?xj)(1-x=2x~)(1-x~x~) I-l¢~(1-x::x~) ' 
r I :~ l  (1--yj)(1--X~yj ) (1--Xi- 1 yj  ) 
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1_ 
at  z = ~=x/~ the residue is 

1_ 
l im (z 7= x/~ ) I  = 

1 

z--++x~ 
l 

1 ( 1 T  x ~ ) ( 1 T  xi ½) 2 

(12.2) 1-[ k~ (l_xj)2(l_xixj)(l=Fx½ xj)(l~xT½ xj) l-Ij¢i (1-x'~lxj) ; 

and, finally, a t  z = yi we have the residue 

l im ( z  - -  y i ) I  = 
z--~yi 

(12.3) 
(1  --  y i ) ( 1  --  y ~ - l )  

1-I~1=1 (1-- xj )2 (1--y~xj )(1--y'(2 xj )(1-yixj )(1-y~ -1 xj ) " 

l-I~=~ (1-yj )(1-~yj  ) l-I j ~  ( ~-y~ ~ ~j ) 

So, the Poincar~ series of C(k l ,  k2) is the sum of these fractions. In practice,  this 

sum m a y  be very difficult to do. However,  T h e o r e m  6 implies t ha t  the sum will 

be a ra t ional  function in the x i and Yi; and tha t  the denomina to r  will divide a 

p roduc t  of t e rms  of the form (1 - m),  where m will be a monomia l  in the x~'s 

and yj's.  We can use this informat ion to calculate a denomina to r  and to prove 

tha t  it is minimal .  

COROLLARY 11: P ( C ( k l ,  k2)) can be expressed as a rational funct ion with 
denominator  

kl 

l - I (1  - xi)(1 - x~)(1 - x 3) I I  (1 - x ix j ) (1  - x~x j ) (1  - x i x  2) 
i = 1  l<_i<j<kl 

kl k2 

I-[ (1- [I 1-I(1- 
l<_i<j<k2 i = 1  j = l  

Proo~ By Theo rem 6, we need only consider the factors in the denomina tors  of 

(12.1), (12.2) and (12.3) which divide ( 1 -  a monic polynomial) .  At the z = xi 
1 

residue, we exclude ( 1 - x ~ 2 x j )  and ( 1 - x - ( l x j )  for i ¢ j .  At the z = + x ~  residue 
1 1 

we rationalize the denomina to r  to replace the factor  of (1 7= xg, x j ) (1  :t= x ~ x j )  
by ( 1 -  xix2)(1  - - 1 2  1 , - x i x j ) ,  and the factors of (1 :F x~y j ) (1  T x-(~Yj)  by 
( 1 - x i y ~ . ) ( 1 -  - 5 2  x~ Ys)" By Theo rem 6, we m a y  then  ignore the t e rms  (1 _ xi-lxj2), 
(1 - xr, ly~), and (1 - xr~lxj)  for i ~ j .  Finally, a t  the z = Yi residue terms,  

we m a y  ignore each (1 - y~-2xj), (1 - y i - l x j )  and (1 - y~-lyj).  Also, in these 

t e rms  note t ha t  each yi has a pole of order one a t  each of 1 and - 1 .  Taking the 
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least common denominator  of the remaining terms gives the desired denominator .  
| 

LEMMA 12: 

(a) P(O(2,01)  = 

2 2  4 4  1 + x l x  2 + x l x  2 
( 1 - X l ) ( 1  - x ~ ) ( 1  - x ~ ) ( 1  - x 2 ) ( 1  - x ~ ) ( 1  - x ~ ) ( 1  - x l x 2 ) ( 1  - x ~ x 2 ) ( 1  -X lX~)"  

X2~ 2 1 - x l Y 1 +  lvl  (b) P ( C ' ( 1 , 1 ) ) =  
( 1 - X l ) ( 1 - x ~ ) ( 1 - - x ~ ) ( 1 - - y ~ ) ( 1 - x l y l ) ( 1 - x l y ~ ) "  

1 
(c) P (C(0 ,  2)) = (1 - y~)(1 - y~)(1 - YlY2)" 

Proo~ Computa t ion .  | 

THEOREM 13: 

in lowest terms with denominator 

kl 

The *-Poincard series P ( C ( k l ,  k2)) can be written as a fraction 

H ( 1  - xi)(1 - x~)(1 - x 3) 1 - [  (1  - x xj)(1 - x xj)(1 - 
l<i<j<_kl i=1 

~1 k2 

l<_i<_j<_k2 i=l j = l  

Proof." By Corollary 11, we know tha t  this polynomial  is a denominator ,  and by 

Lem ma  12 we know tha t  it is a least denominator  in the cases of (kl, k2) -- (2, 0), 

(1, 1) or (0, 2). By specializing one of the variables to zero in Lemma 12, we also 

know tha t  the theorem is t rue in the case of (kl, k2) = (1, 0) or (0, 1). Now, in 

the general case, the denominator  must be a symmetr ic  polynomial  and it must  

divide the given one. But,  if some factor was not present, we could specialize 

some of the variables to zero (depending on which te rm was not present) to get 

a smaller denominator  in one of the cases (1,0), (0,1), (2,0), (1,1) or (0,2). | 

We can derive a similar theorem for ordinary Poincar~ series P(C(k) )  using 

Theorem 13. 

THEOREM 14: The Poincar6 series P(  C(k ) ) can be written as a fraction in lowest 

terms with denominator 

k 

I I ( 1  - ti)(1 - t ~ ) 3 ( 1 -  t3) 2 H ( 1 -  titj)3(1 - tit2)2(1 - t~tj) 2. 
i=1 l<_i<j<_k 
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Proof'. The *-Poincar~ series and the Poincar~ series are related by 

P ( C ( k ) ) ( t l , . . . ,  tk) ---- P ( C ( k ,  k ) ) ( t l , . . . ,  tk; tl . . . . .  tk). 

Hence, it follows from the previous theorem tha t  the polynomial  

k 
l - I (1  -- ti)(1 -- t2)3(1 -- t3) 2 I I  (1 -- t i t j)4(1 -- t#~)2(1 -- t~tj) 2 
i----1 l ~ i < j < _ k  

is a denominator  for P ( C ( k ) ) .  This agrees with the denominator  we are proving 

except for the exponent  of (1 - t i t j) .  So, consider the integral (11). The poles 
! 

inside the unit disk are at  each z = ti and z = + t~ .  The latter are simple poles 

and only contr ibute (1 - t~ t j )  to the first power. However, z = ti is a pole of order 

two, so in order to calculate the residue we must  first mult iply the integrand by 

( z -  ti) 2, take the partial  derivative with respect to ti and then set z = ti- Taking 

the partial  derivative and using the product  rule will cause the (1 - t iz)  2 in the 

denominator  to be replaced by (1 - t j  z) 3, and after subst i tut ion this will become 

(1 - t j t i)  3. 

This shows tha t  the polynomial  in the s ta tement  is a denominator  for P ( C ( k ) ) .  

In order to prove tha t  it is a least denominator ,  as in the previous theorem, it 

suffices to prove tha t  it is a least denominator  in the case k = 2. The relevant 

integral can be evaluated using Macsyma.  The denominator  is as claimed. The  

numerator  is quite messy (over 100 terms), but  it can be verified tha t  it has no 

factors in common  with this denominator .  | 

W h a t  can we say about  the numerators?  Let n ( - ) ( t l  . . . .  , tk) be the numera tor  

of P ( - ) ( t l , . . . ,  tk) in lowest terms. Then  our computa t ion  of the denominators  

in this section lets us use the functional equations for the Poincar~ series from 

Theorem 9 to get functional equations for the numerators.  

THEOREM 15: I f  each Poincard series is writ ten as a rational function with de- 

nominator  as in Theorems 13 and 14, then the numerators satisfy functional 
equations 

(1) n(C(k ) ) ( t 71  . . . .  , t~ 1) = :b ( t l . . .  t k ) 7 - 1 1 k n ( C ( k ) ) ( t l , . . . ,  tk). In particular, 

it is o f  degree l l k -  7 in each ti and total degree k ( l l k  - 7). The term of  
highest degree is + ( t l  . . .  tk) 11k-7. 

(2) n ( O ( k l ,  k 2 ) ) ( X l  1, "" • , x-l'k, , Y l  1," . . ,y-l~k2 ] = ±(Xl "" "3gk,)4-4k'-2k2x.. 

( Y l " " Y k 2 ) 2 - a k l - k ~ n ( C ( k l ,  k 2 ) ) ( X l , . . . , x k ~ , y l , . . . , y k ~ )  when kl > 1. In 

particular, it is o f  degree 4kl + 2k2 - 4 in each xl  and 3kl + k2 - 2 in each yi 

and total degree kl(4kl  + 2k2 - 4) + k2(3kl  + k2 - 2). The term of  highest 
degree is + (Xl • • • xk~ )4kl ÷2k2-4 (Yl • • • Yk~)ak~ +k~-2. 
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(3) n(V(O,  k 2 ) ) ( y l  1 . . . .  ,Yk2) = ± ( Y l , . . . , Y k 2 ) 2 - k 2 n ( C ( O ,  k 2 ) ) ( Y l , . . . , Y k ~ )  
when k2 >_ 2. In particular, it is of degree k2 - 2 in each Yi and total 

degree k2(k2 - 2). The term of highest degree is ± ( Y l " "  yk2) k2-:. 

Proof: Each numerator is the product of the denominator times the Poincar5 

series. Theorems 13 and 14 imply that the denominators satisfy functional equa- 

tions of the given type. Theorem 9 implies that the Poincar~ series satisfy func- 

tional equations except for the k2 --- 0 case. However, since the Poincar~ series 

equals the sum of (12.1), (12.2) and (12.3), it must satisfy 

P ( X l  1, X--1 --1 " ' "  kl ' Yl  1 ' ' ' ' '  Yk~ ) 

---- ( - - 1 ) k 2 + l ( x l ' ' ' X k l ) 6 ( y l " ' ' Y k 2  ) 3 p ( x l , . . - ,  X k  1 , Y l , ' - ' ,  Yk2)" 

The functional equations for the numerators follow. As for the degrees, each 

Poincar~ series is monic and each denominator is monic, so the numerator must 

be monic. The degree now follows from the functional equation. | 

4. /~ in t h e  3 x 3 c ase  

The case of P(/~) is similar. In this case 

1 
P(/~(ki, k2)) -- 2(27ri)-1x 

k (1 - z)(1 - z - i ) (1  + z + z - i )  2 
(13) J ~ l z  . . . . . . .  dz. 

I= 1 r L  l=i(1-xi)2(1-z2xi)(1-z-2xi)(1-zxi)(1-z- ixi)  .~ 
y I ~ 2 = l ( 1 - - y i ) ( 1 - - z y i ) ( 1 - - z - l y i )  

If 3kl + k2 _> 4 we avoid poles at z = 0 and, again, the only poles inside the 

unit disk will be at z = xi, z = i x½ and z = Yi. So, the residues will be: 

At z = xi: 

(13.1) 
X-1)2 (1 - xi)(1 - X i - 1 ) ( 1  ± Xi ± 'i 

y I  k l  ( 1 - - X j ) 2 ( 1 - - X 2 X j ) ( 1 - - X ? 2 X j ) ( 1 - - X i X j )  l - I j ¢ i ( 1 - - x ~ l x j )  * j = l  l z 

YI~l(1-yJ)(1-x~yJ)(1-~:%) 

1_ 
At  z = ±x~:  

(13.2) 

1 -- 1 1 

(1 T x ~ ) ( 1 T  xi ½)(1± :r5 ± xi-5) 2 
1 1 

1-[ kl (1-xj)2(1-xixj)(1Txgxj)( l:Fx~ 2 xj)2 yI j¢ i (1-x~lx j )  ~ j = l  t 

YI~=i(1-yj)(ITx~yj)(1Tx;½yj)  
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And at z = yi: 
--1 2 (1 - y i ) ( 1  - y ~ - l ) (1  + Yi + Yi ) 

(13.3) [I~( l_xj )~( l_y~xj ) ( l_y j2  )(l_y~x~)(l_y~_%j ) • 

Examining the cases the reader will notice that ,  in (13.1) there is a factor of 

(1 + x~ + x~) in the numerator  which reduces the factor of (1 - x ~ )  in the denomi- 
1 

nator  to (1 - x i ) ;  and in (13.2) there is a factor of (1 :t:x~ + x i )  in the numera tor  
3 1 

which reduces the factor of (1 - x ~ )  in the denominator  to (17: x~ ). Taking these 

cancellations into account gives this analogue of Corollary 11: 

16: P ( R ( k l ,  k2)) can be expressed as a rational function with COROLLARY 

denominator 
kl 

H (t - xi)2(1 - x2) H (1 - x ix j ) (1  - x~xj)(1 - xix~) 
i----1 l<i<j<kl 

kl k2 

II (1- ~yJ) H II(1- x~y~)(1- x~g). 
l<_i<_j<_k2 i=1 j = l  

Here is the analogue of Lemma 12: 

LEMMA 17: 

(a) P(/~(2, 0)) = 

2 2 1 + XlX2 + x tx2  
(1 - x1)2(1 - x~)(1 - x2)2(1 - x2)(1 - XlX2)(1 - x2x2)(1 - XlX2~)" 

(1 + Yl + Y~) 
(b) P(/~(1, 1)) = (1 - / 1 ) 2 ( 1  - - / ~ ) ( 1  - y12)(1 - XlYl)(1 -- Xly2) " 

(C) P ( / ~ ( 0 ,  2))  = 1 + YI + Y2 q- y2 q_ 2yly2 + y~ + y2y2 -4- y l y  2 

(1 - y12)(1 - y~)(1 - YlY2) 

Combining these two results gives Theorem 18, and Theorem 19 follows with 

a bit  more work. 

THEOREM 18: The *-Poincard series P(/~(kl ,  k2)) can be written as a fraction 

in lowest terms with denominator 
kl 

H ( 1 -  xi)2(1 - x~) H ( 1 -  z i x j ) ( 1 -  x ~ z j ) ( 1 -  xix~) 
.i=1 l <i<j<_kl 

kl k2 

H (1 - ~iu~) 1-I H ( 1  - x iy j ) (1  - xiyY) • 
l<i<i_<k2 i = 1 j = 1  
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THEOREM 19: The  Poincard series P(R(k))  can be wri t ten as a fraction in Iowest 
t e rms  with denominator 

k 

H ( 1 - t i ) 3 ( 1 - t ~ ) 3  H (1 - t i t j )3 (1 - t~ t~ )2 (1 - t~ t j )2"  
i----1 l (_ i~ j~_k  

Proof." Taking  kl = k2 = k and  let t ing each xi and yi equal ti, it follows f rom 

Theo rem 18 tha t  P(R(k))  can be wri t ten  as a fraction with denomina to r  

k 

H ( 1 -  ti)2(1 - t ~ ) 3 ( 1 -  t~) H (1 - titj)4(1 - t i t ~ ) 2 ( 1 -  t~tj) 2. 
i=1 l (_ i<j (_k  

So, we need to  e l iminate  the ex t r a  factors of  (1 - t~) and (1 - titj). The  la t te r  

can be handled as in Theorem 10. As for the (1 - t3), refer to (13.1), (13.2) 

and (13.3). If  we t ry  to specialize each xi and Yi to ti before adding, there is 

no p rob lem with  (13.2), bu t  (13.1) has a factor of (1 - xT, lyi) = xT~l(xi - Yi) in 

the denomina to r  and (13.3) has a factor of (1 - y~lxi) = y~-*(yi - xi),  each of 

which would become zero. Since these are the only t e rms  which vanish if xi and 

Yi are set equal, it follows tha t  if we add these two te rms  there will be  a factor  

of (xi - Yi) in the numera to r  which will cancel this t e rm  in the denomina tor  of  

the sum. 

Now, if we add (13.1) and (13.3) the denomina to r  will have a factor of ( 1 - y ~ x i )  

which specializes to ( 1 -  t3), which cannot  be  cancelled before specialization. This  

is the only such t e rm  and the source of the (1 - t 3) t ha t  we need to deal with. 

However,  the numera to r  of the sum will be of the form ( l+xi+x2)A+(l+yi+y2)B 
and on specialization it has a factor  of (1 + ti + t~), turning the unwanted (1 - t  3) 

in the denomina to r  into the ex t ra  factor of (1 - ti) we need. 

Finally, a M a c s y m a  compu ta t ion  shows tha t  this denomina to r  is correct in the 

case of k = 2 which shows tha t  it is least possible in general. | 

In the general case we do not know P(C(k))  or P([t(k)) because we do not 

know the numerators .  In the case of kl = 0 where all of the matr ices  are skew 

symmetr ic ,  we can get a complete  descript ion of P ( C ( 0 ,  k)) and P(/~(0,  k)) using 

Schur functions. 

T H E O R E M  2 0 :  ( a )  P(C'(0,  k ) ) = Ea,b,c~_O S (  2a+ 2b+c,2b+c,c) ( Y l '  " " " Yk  ).  

(b) P(/~(0,  k)) = 

a,b,c>O ),1 > ,k2 >_)~3 

+ Z . . . . .  
*kl _>)~2 >_.k3, .k2_>l 
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Proof: (a) The integral (12) reduces to 

~ (1 - z ) (1  - z - 1 )  dz 

k f (1 -- Z)(1 -- Z -1) dz 
I I (1 -  Yd-~ ~z -" 
i=1 [=1 rlL (1-- 7) i - -  g z - , )  

This latter integral can be expanded using Cauchy's identity (cf. [FuH], A.13) 

(1 - z ) ( 1 -  z - 1 )  
k 

l-L=1 (1 - yiz)(1 - yi z - l )  
= (1 - z)(1 - z - 1 ) E s A ( z , z - 1 ) s A ( y l , . . . , y k ) .  

A 

But, the Schur function S;,(z, z -1) is zero unless A has height at most two. Hence, 

the integral can be expanded as a series in Schur function of height at most two, 

and the coefficients can be calculated from the k = 2 case, which we calculated 

in Lemma 12(c). It equals 

(1 + y l ) - l (1  + y2)-1(1 - y~y~)-l = Z ( _ l ) i & ( v .  y2) ~ sj,j(vl, y~) 
i j 

= ~ ( - 1 ) % + j , ~ ( y i ,  y2). 
i , j  

To get from this sum to P(C(0,  k)) we need to multiply by I-[i(1 - yi) -1 = 

~"~m Sm. By Young's rule, the coefficient of S~, A = (A1, A2, Aa) equals 

E ( -1 )m-"2"  
~=(m,~2)c_), 

Now, # _C A if and only if A2 < #l _< A1 and A3 _< #2 _< A2. Hence the above sum 
equals 

~1 A2 A1 A2 

E E = E Z 
~ul -----X2 ~u2 =Aa /~1 =)~2 P~2 ----A3 

This sum will be zero if either A1 - A2 or A2 - A3 is odd. If they are both even, 

it will equal ( -  1) Aa (_ 1) As, which will equal 1 since A2 - A3 is even. 

(b) We need to evaluate Lemma 12(c) in terms of Schur functions for k = 2. 

Again, we pull out the factor of (1 - yl)-1(1 - y2) -1. Now 

1 + vl + v~ + y~ + 2Vly~ + y~ + y~y~ + y~y~ 
(1 + yl)(1 + y2)(1 - YlY2) 

1 Yl + Y2 + 
(1 + yl)(1 + y2)(1 - YlY2) (1 - YlY2)" 
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The first term is i ~-'~i,j(-1) Si+j,j(Yl,  Y2), as in part (a). The second term is 
~ i  S~+l,i(yl, Y2)- The rest of the proof is an exercise in Young's rule. | 

Aside.  The proof of Theorem 15 shows that in order to calculate P(3, 0, k; s) 

for all k it suffices to calculate P(C(3, 0, 2; t)) and that the general case follows 

from properties of Schur functions. Likewise for/~. This generalizes easily. The 

ordinary Poincard series P(C(2n + 1, k; t)) or P(/~(2n + 1, k; t)) is completely 

determined by the case k = 4n 2 + 2n, and P(C(2n, k; s)) and P(/~(2n, k; s)) 

are determined by the case k = 4n 2 - 2n; and the *-Poincard series would be 

determined by (kl, k2) = (2n 2 + 2n, 2n 2) in the transpose case and (kl, k2) = 

(2n 2 - 2n, 2n 2) in the symplectic case. 

Here is the analogue of Theorem 15 for/~. 

THEOREM 21: If  each Poincard series is written as a rational function with de- 

nominator as in Theorems 18 and 19, then the numerators satisfy functional 

equations 

(1) n([t(k))( t[  1 . . . .  , tk -1) -= ± ( Q ' "  tk)9-gkn([ t (k) ) ( t l , . . . ,  tk). In particular, 

it is of degree 9k - 9 in each ti and total degree k(9k - 9). The term of 

highest degree is ± ( t l . . .  tk) 9k-9. 
• X--1 --1 --1 )6-4kl--2k2 × (2) n([t(kl,kz))(x-~ 1, . . ,  kl ,Yl , " ' ,Yk~  ) = =k(xl . . .xkl  

(yl...yk2)2-3k~-k2n([~(kl, k2 ) ) (X l , . . . ,Xk l ,Y l , . . . , yk2 )  when kl >_ 1. In 

particular, it is of degree 4kl + 2k2 - 6 in each xl  and 3kl + k2 -- 2 in each Yi 

and total degree kl(4kl + 2k2 - 6) + k2(3k1 + k2 - 2). The term of highest 
degree is ±(x l  " " xk~ )4kl +2k2-6(y1... Yk2)3k~ +k2-2 

(3) n(C(0, k2))(yl- ' , . . . ,yk2) ---- ±(Yl . . . .  ,yk,)2-k'n(C(0, k2))(yl,-.-,Yk2) if  

k2 ~_ 2. In particular, it is of degree k2 - 2 in each Yi and total degree 

k2(k2 - 2). The term of highest degree is ±(Yl" '"  Yk2) k~-2. 

5. 4 × 4 ma t r i c e s  with symplectic involu t ion  

We would like to imitate the arguments of the previous section for the case of 4 × 4 

matrices with symplectic involution. The main obstacle is that the computations 

are much longer• For example, to calculate P(C(kl ,  k2)) (again suppressing the 

size of the matrices and the type of involution from the notation) we need to 

evaluate the integral 

f numerat°r d z2AdZl  
(15) (2~i)-2 FI(1 - xi)-2 r I ( 1  - yi)-2 denominator z~- zl ' 
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where 

and 

n u m e r a t o r  = ( 1  - z lz2 ) (1  - SlZ2- i ) (1 - Z I I z 2 ) ( 1  - -  Z~lZE I) 
x (1 - z b ( 1  - .~T~)(1 - ~ ) ( 1  - ~ )  

denominator = E ( 1  - zlz2xi)(1 - ziz~lxi)(1 - z11z2xi)(1 - z~ lz ; lx i )  
i=1  

k2 
. - - 1  --1 

x l - I ( 1  - Z l Z 2 y i ) ( l  - Z l z ~ l y i ) ( 1  - z l l Z 2 y i ) ( 1  - ~1 z 2  y i )  

i--1 

X Z - 2  (1 - d ~ d ( 1  - : 1 ~ y ~ ) ( 1  - : ~ y ~ ) ( 1  - ~ y~) .  

It seems strange, but rather than evaluate (15) directly, it turns out to be 

easier to evaluate 

1 / numerator d 2 A d Z l  
(16) (2rri)-2 E ( 1  - xi)-2 E ( 1  - Yi)-2 denominator z2 z---i- 

where the numerator is as in (15), but the denominator is given by 

denominator = 

ii(1 ZlZ2ai)II( 1 . ,  1 ~  __ - - ~1 -~  ~ ,  l - I ( 1  z11225i) l - I ( 1  z i - l z 2 - i d i )  

2 1 (16) x E ( 1  - z~ei)1--[(1 - zr2fi) I I  (1 - z2gi) E (  - z2 -2hi)' 

where we have replaced the x's and y's in the integral with independent variables 

a through h, all assumed to be less than 1 in absolute value. A similar device was 

used by Van den Bergh in his study of the case of matrices without involution 

in IV]. Information obtained from (16) can be transferred to (15) by specializing 

the new variables back to x's and y's. (So, for example, some of the ai would 

specialize to x's and some to y's.) To simplify the computation of (16) we will 

assume 

(17) bi< ~ j  <dk for al l i ,  j a n d k .  

Since the result of (16) is a rational function, it certainly suffices to identify it 

under this restriction. 

LEMMA 22: If there are no poles at zero, then the integral (16) can be evaluated 
by adding the residues at the poles (Zl, z2) = (V~,  bjx/~), ( ~ ,  X/~/G),  

(x/Yi~,dj/vFf), ( d i ve ,  1/v /~) ,  (Civ/~, v /~ )  and (v~i, x /~) .  
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Proo~ In the inner integral z2 has poles inside the unit disk at biZl, diz71 and 

v/-~i. Taking first z2 = bizl, if we multiply the integrand by z2 - bizl and take 

the limit as z2 approaches bizl we get a fraction with denominator 

U ( 1  - biajz~) U ( 1  - b(lbj) U ( 1  - bicj) U(b~-ldjz~ 2) 
j j# i  j j 

1 [ ( 1 - e j z ~ )  l - I ( 1 -  fjz~ 2) I-[(1-b~gjz~) ri(1-b-[2hjzr2).  
J J J J 

The poles for Z 1 in the unit disk would be 

~ ,  X/~J, and v/~j/bi, 

but thanks to assumption (17) only x/r~ is possible. In this case z2 = biv/~ .  

Next, the residue at z2 = diz~ 1 has denominator 

U ( 1  - ajd~) 1-[(1 - bjd.(lz 2) U ( 1  - cjd~z~ 2) U ( 1  - d71dj) 
j j j j~i 

1 - I (1 -  ejz~)1[(1-  Sjz~ -2 ) 1[(1-  g~d~zr ~) H ( 1 -  hjd(2z2). 
J J J J 

Taking into account (17), there are three types of poles in the disk: zl = ~ ,  

zl = x / ~  and Zl = dive .  The respective z2 values are x/'di/cj, d i /v /~  and 

1/v . 
Finally, in the case of z2 - ~ the residue has denominator 

1-I(1- aj 1-I(1-bj/v  zl) 1-[(1- 1) 1[(1 - / 
J J J J 

H ( 1 - e j z 2 )  1 [ ( 1 -  f jz[  2) I I ( 1 -g jh i )  U(h jh: ' ) .  
j j j j¢i 

This creates poles in the disk at zl = cj v ~  and Zl = V ~ -  This completes the 

proof, except for the technical remark that  one should also consider the terms 

with the square root replaced by the negative square root. In all cases this will 

not effect the resulting residues and so we will ignore this point. | 

It is easy to evaluate the residues in the lemma: Simply substitute zl and z2 
by the indicated values, deleting the two terms which would become zero in the 

denominator. 
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LEMMA 23: The *-Poincard series P(C(kl ,  k2)) for the trace ring of 4 x 4 matrices 

with symplectic involution can be written as a rational function with denominator 

1-I (1-y~lYJ2YJa) 1-[ (1-yj21yj22) I I  (1-y] lYJ2)  
Jl~J2 J3 j l  ~__j2 j l • j 2  

J2 <J3 

j t  <_j2 i1<i2 

1--[ (1 -  yj yj yj ) I I  (t - 1-I 
j l  <J2 <j3 Jl ~£j2 j l  <_j2 

i1<i2 i 

where the x indices are understood to go from 1 to kl and the y indices from 1 

to k2. 

Proof: By Theorem 6 we know that the result of the computation will be a 

rational function with denominator a product of terms which divide a monic 

polynomial, and so we may ignore all terms in each summand not of this form, 

confident in the knowledge that they will cancel in the sum. If we merely take 

the least common denominator of the remaining terms, the result will not be as 

claimed in the lemma. There would be an extra factor of l-I(1 - xi). However, 

Theorem 10 controls the order of the pole at xi -- 1 and guarantees that this 

term will cancel, 

It would be quite tedious to read the complete computation of the denominator. 

We will just show how to compute one of the terms as an example and the 

interested reader may check the rest. If (zl, z2) = ( ~ ,  V/-~/ci), then when 

we specialize we may let ci or dj be either an x or a y. There are therefore four 

possible terms to consider. (Other cases will require fewer possibilities since the 

variables e, f ,  g and h can only be specialized to y's.) Because we will want to 

refer to it later, we will do the case in which ci = xl and dj -- x j .  In this case 

the numerator will become 

( 1  - x j ) ( 1  - x j l ) ( 1  - x l ) ( 1  - xl) 

(1 - xlxg)(1  - x)-lXgl)(1 - x j x I 1 ) ( 1  - x j l x l ) .  

Note that if I = J,  then the numerator becomes zero and so we may assume in 

this case that 1 7~ J. The denominator is 

1-[(1- xjx,)(1- xzx,) H(1- xilxi) I'I(1- xjlxi) 
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H ( 1  - x jy j ) (1  - x j l y j ) ( 1  - x ly j ) (1  - x j l y j )  
J 

(1 - x i x j y j ) ( 1  - x l l x j l y j ) ( 1  - X jX l l y j ) (1  - x j l x l y j ) .  

The terms not involving inverses are (1 - x jx i ) ,  (1 - xIxi )  and (1 - x i x j y j ) .  

Since I ¢ J each (1 - xilxi2) will occur at  most  once in the product .  I f  i is I 

or J then there will cancellation with the (1 - xi)  or (1 - x j )  in the numerator .  

Finally, taking into account  the 1~ ( 1 - xi ) - 2 1-[j (1 - yj ) - 2 outside of t he integral, 

the contr ibut ion to the denominator  is 

l - I ( 1 -  x i ) l - I ( 1 -  y j ) 2 1 - I  ( 1 -  xi~xi2) 1-I l - I (  1 - xi~xi2yj). 
i j i1(_i2 i1<i2  j 

This divides the denominator  asserted by the lemma. The remaining cases offer 

few addit ional  subtleties. | 

COROLLARY 24: P(C(k ,  0)), the Poincard series for the trace ring o f  the r ing 

generated by k symmetr ic  4 × 4 matrices with symplectic involution, can be 

written as a fraction in lowest terms with denominator I - [ i ( 1 - x i )  ~i<j  ( 1 - x i x j  ). 

Proo~ In the proof  of the previous lemma, if there are no y 's  then we need 

not consider any terms containing e's, f ' s ,  g 's  or h's. And there is only one pole 

which doesn ' t :  The one we actually computed  in the proof  of the previous lemma. 

The denominator  there is the one claimed. To see tha t  it is a least denominator  

we may  calculate the Poincard series in the case of k = 2. We get 

P(C'(2,  0)) = (1 - Xl)-1(1 - x2)-1(1 - x~) - l (1  - x2)-1(1 - xlx2) -1 

and this completes the proof. | 

We don ' t  have the computa t ional  power to verify tha t  the denominator  of 

Lemma 22 is a least denominator  in general. In order to do this, one would need 

at least to  calculate the cases of (kl, k2) = (0, 3), (1, 2) and (2, 1). Here are some 

cases we did calculate: 

LEMMA 25: 

(a) P ( C ( 2 ,  0)) = (1 - XlX2)-1(1 - x21)-1(1 - x~) - l (1  - x l ) -1 (1  - x2) -1. 

(b) P ( C ( 1 ,  1)) = ( 1 - x 2 y 2 ) - l ( 1 - y 4 ) - l ( 1 - x y 2 ) - ' ( 1 - y 2 ) - l ( 1 - x 2 ) - l ( 1 - x )  -1. 

(c) P (C(0 ,  2)) = 

2 2  4 2  3 3  2 4  4 5  5 4  6 6  
1 - y2y2 - YlY~ + YlY2 + YlY2 + 2ylY2 + YlY2 - YlY2 - YlY2 + YlY2 

1 2 2  1 3 1 3 1 4 1 4 1 2 1 2 ( Y l Y 2 ) (  --YlY 2)( --YlY2)( --Yl)( --Y2)( --YlY2)(--YlY2) 
(1-uly2)(1-y~)(1-y~) 
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Note t ha t  the denomina to r  (c) is in agreement  with L e m m a  22 and tha t  (b) 

has a factor of (1 + x) missing. 

To do the case o f /~  instead of C we need to mul t ip ly  (15), and therefore (16), 

by (zl + z2 + z~ -1 + z~ l )  2, which changes the numera to r  to 

(1-.1~2,~2-:~(1 . . . .  z~z;2)(1-z i~zl ) (1  z:2z;2)(1-zi~)(1 z:2)(1-z~)(1 z;2). 

I t  turns  out t ha t  this tends to make all of the computa t ions  a bit easier by causing 

more  t e rms  in the  denomina to r  to cancel. L e m m a  22 still holds in this case. Here 

are the analogues of L e m m a  23, Corol lary 24 and L e m m a  25: 

LEMMA 26: The ,-Poincard series P( [~( kl, k2)) for 4 × 4 matrices with symplectic 
involution and t race can be written as a rational function with denominator 

n (1 - Y~YJ~YJ3) H (1 - y]yj~) n (1 - x2yj~yj~) 
Jl CJ2 J3 j l  ~£j2 j l  ( j 2  

J2 (J3 

j l  ~_j2 il  4 i2  j l  < j2  < j a  

H (1- yy .j ) H 
j l  ¢ j 2  j l  < j2  

n ( 1 - x i ~ x i 2 ) n ( 1 - x i y J ) n ( 1 - x i ) 2 n ( 1 - y 2 ) ( 1 - y j )  , 
il <i2 i , j  i j 

where the x indices are understood to go from 1 to kl and the y indices from 1 

t o  k2.  

COROLLARY 27: P(R(k, 0)), the Poincard series for the ring with t race generated 
by k generic symmetric matrices, is a rational function with/east denominator 

k 
Hi----1 (1 -- X~) 2 n i<j (1 -- XiXj). 

LEMMA 28: (a) P( /~(2 ,0) )  = (1 - x l ) - 2 ( 1  - x2) -2(1  - xlx2) -1. 
(b) P(/~(1,  1)) = (1 - x ) -2 (1  - y ) - i ( 1  - y2)-1(1 - x y ) - l ( 1  - xy2) -1 .  

(c) P(/~(0,  2)) = 

1 2 2 + YlY2 
( 1 - y 1 ) ( 1 - y 2 ) ( 1 - y ~ ) ( 1  2 2 2 2 3 " -Y2)(1-yly2) (1-yly2)(1-yly2)(1-y~y2)(1-yly2)  

(d) P( /~(2 ,1) )  = (1 - x l y 2 ) - l ( 1  - x 2 y 2 ) - l ( 1  - X l X 2 y ) - l ( 1  - X l X 2 )  - 1  

x(1 - x i y ) - l ( 1  - x 2 y ) - l ( 1  - y 2 ) - 1 ( 1  - y ) - l ( 1  - x 1 ) - 2 ( 1  - x 2 )  - 2 .  

Note tha t  the results in L e m m a  28 agree with L e m m a  26. We go so far as to 

base a conjecture on this. 
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CONJECTURE 29: If  k2 ~ 0 then P(C(kl ,  k2)) can be written as a fraction in 
lowest terms with denominator 

H ( 1 - Y ~  yj2yj3) H (1 - YJ~YJ22) H (1 - YjlYJ2)3 
JlCJ2 J3 j l  <_j2 j t  ~£j2 

J2<J3 

H (1 - x~yj~yj2)(1 - xiyj~yj2 ) H (1 - xilxi2yj) 
jl <_j2 il <i2 

H (1-yJ'YJ2YJ3) H (1-Yj2~YJ 2) H (1-yJ~YJ2) 
j~ <j2 <j3 jl ~J2 jl <_j2 

1-I ( 1 -  xi, xi2) H ( 1 -  xi), 
i l  ~_i2 i 

and P( R( kl, k2)) can be written as a fraction in lowest terms with denominator 

H (1-y21yj2yja ) l-[ (1 - Yj~Yj2)3 H ( 1 -  xiyj, yj2 
Jl:idJ2 J3 j 1 ¢ j 2  j l < j 2  

J2<J3 

H ( 1 -  xiYj~yj,) H ( 1 - x i l x i : y j )  H ( 1 -  Yj~Yj2Yja) 
j l  ~j2 il <(i2 j l  <j2 <j3 

2 2 
H (1 - Yj~Yj2) H (1 - Yj~Yj2) 

j l  ~j2  j l  <j2 

H ( 1 -  xilxi2)l-I(1 - x i y j ) H ( 1 -  x i ) 2 H ( 1 - y ~ ) ( 1 - y j ) .  
il <i2 i , j  i j 

If in P(C(k, k)) and P(R(k, k)) we set each xi and each yi equal to ti, we get 

P(C(k)) and P(R(k)), respectively. These will be rational functions and, using 

Lemmas 23 and 26, we can calculate denominators. We presume that  these 

denominators will not be minimal, but that  they won't be far off. In order to 
express the result more compactly, we introduce some notation. Given a k-tuple 

a, let A be the set of all permutations of a. Define [a] := yI~EA(1 - t/3). For 

example, if a = (2, 1, 0 , . . . ,  0), which we will abbreviate as (2, 1), then [2, 1] = 

1 - I i < i # j < k ( 1  --  t~tj); and if a = (1, 1), then [1, 1] = 1-I i<_i<j<k(1  - titj). 

THEOREM 30: The Poincard series P(C(k)) can be written as a fraction with 
denominator 

[41213,11212,21312,1,11213112,11411,1,117121311,1] 2 

and P(R(k) ) can be written as a fraction with denominator 

[3,11212,1,11213][2,11411,1,117121211,11511] 3 • 
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We conclude by proving an analogue of Theorem 20 and express the Poincar5 

series of ~'(k,  0) a n d / ~ ( k ,  0) in te rms  of Schur functions. Two prel iminaries are 

needed. 

LEMMA 31: The Poincard series for each of  C'(k, 0) and R(k ,  O) can be written 

as l-i(1 - xi)  2 t imes a series ~ m~S~ in the Schur functions, in which each A has 

height a t  most  4. In particular, the coefficients m~ are determined by the k = 4 

case. 

Proo~ In each case, the Poincar6 series is the integral  of a fraction, with nu- 

me ra to r  a function of Zl and z2, and whose denomina to r  is 

k 
1-I(1 -- :%:i)2(1 -- ZlZ2Xi)(1 -- ZlZ21Xi)(X -- Z l l  Z2Xi)(1 -- z l l  z21Xi).  
i=l 

By the Cauchy identity, the integrand is the numera to r  t imes 

I ] ( 1  _ x i ) - 2 E  -1 -1~ -1 -1 -, S)~(ZlZ2,ZlZ 2 , z  1 ~2,Zl z 2 ) S A ( X l , - .  Xk). 

If  the height of A is greater  than  4, the first Schur function will be zero, and the 

l e m m a  follows. | 

LEMMA 32: The Poincard series for C'(k, 0) for k > 4 and  the Poincard series for 

/~(k, O) for k ~_ 5 satisfy the functional equation 

P(x71  . . . .  , x [  1) = ( x l " ' "  xk )6p (xx  . . . .  , xk).  

Proo~ Consider the case of C. The  Poincar~ series is given by the integral  

g i - [ (  1 _ x i )_  2 numera to r  du 
i=1 denomina to r  

where, as in (15), the numera to r  is 

numera to r  =(1 - ZlZ2)(1 - z iz21)(1 - z~-lz2)(1 - z11z~  1) 

× (1 - z~)(1 - z 7 2 ) ( 1  - z~)(1  - z ;  2) 

and the denomina tor  is 

k 

denomina to r  = I I ( 1  - zlz2xi)(1 - z l z ; l x i ) ( 1  - z l i z 2 x i ) ( 1  - Z l l Z ~ l x i ) .  
i=1 
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There  is a pole of order  4 at  zl = 0 in the  numera to r  and  of order  2k - 1 ( the 1 

coming  from the  du) in the  denomina to r .  Hence, under  the  hypothes is  k _> 4, 

the  f rac t ion does not  have a pole  a t  z l  = 0. So, to  evalua te  the  in tegra l  we 

need consider  only the  poles at  zt  = xxz2 and  a t  zl  = xr/z2 .  The  two cases are  

s imilar ,  so we will consider  only the  former. In  this  case the  residue is a f ract ion 

wi th  
numera to r  =(1  - xzz~)(1 - x i ) (1  - x i 1 ) ( 1  - X l l Z 2  2) 

x (1 - x~z~)(1 - x)-2z22)(1 - z2)(1 - z22) 

and  

denomina to r  = H(1 - x ix i z~) (1  - XlXi)(1 - x i l x i ) ( 1  - x l l x i z ;  2) 
i¢i  

x (1 - x~z2)(1 - x~)(1 - z~-2). 

Note  t h a t  the  (1 - z~ -2) in the  numera to r  and  denomina to r  cancel,  so there  are no 

poles at  z2 = -t-1. Taking  this  cancel la t ion  into account ,  the  pole at  z2 = 0 is of 

order  5 in the  numera to r  and  order  2k - 3 in the  denomina to r .  Hence, for k >_ 4 

the  f ract ion has no pole a t  z2 = 0. So, the  only poles will be at  z2 = + X / ~ / x i  

for J such t ha t  x l  > x j .  The  residue will be the  fract ion wi th  

numera to r  =(1  - x j ) ( 1  - x~)(1 - xT1)(1 - x  j-l) 

x (1 - x l x J ) ( 1  - x / I x  j l ) ( 1  - x j / x I ) ( 1  - -  Xl /XJ )  

and 

denomina to r  = n (1 - x j x i ) ( 1  - x lx i ) (1  - x i l x i ) ( 1  - x j / x i )  
i # l , J  

x (1 - x i x j ) ( 1  - x~)(1 - x j / x l )  

x 2(1 - x j )2(1  - x t x z ) ( 1  - x z / x I ) .  

We leave i t  to the  reader  to check tha t  each such t e rm satisfies the  funct ional  

equa t ion  claimed.  

The  case o f /~  is s imilar ,  wi th  the higher value of k needed because  of the  ex t r a  

2 z21)~ factor  of (Ec~=l  Z(~ q- in the  numera tor .  | 

THEOREM 33: (a) Given a and b, define even(a ,b)  to be the number of  even 

integers n, a < n < b and odd(a ,  b) to be the number of  odds. Then the Poincard 

series of  C(k,O) is given by ~ht(x)_<6 m~S~, where the coefficient m~ is given by 

5 5 

m), = H even(A/+1, ~i) + n odd(Ai+l ,  ~i). 
i= l  i=1 
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(b) The Poincard series o f f , (k ,  O) is given by ~ht(~)_<6 m~S~, where the coef- 
ficient rna is given by 

m;~ = (A1 - A2 + 1)(A2 - A3 + 1)(A3-  A4 + 1)(A4 - A5 + 1)(A5 - A6 + 1). 

Proo~ (a) By Corollary 24, the Poinca% series is 

f ( x > . . . , x k )  I I ( 1  -- xi) -2 1-I(1 + xi) -1 l-I(1 -- xixj)  -1, 
i i i < j 

for some polynomial f .  It follows from Lemma 32 that for k _> 4, the numerator 

f is of degree n - 4. Hence, if n = 4, the numerator is a constant, and it is not 

hard to see that it must be 1. So, 

g ( x  I . . . . .  X4) = H ( 1  -- Xi) -u H ( 1  + X~)--' H ( 1  -- XiXj) -1. 
i i i < j 

Applying Lemma 30, we turn to the computation of the product 

r i ( 1  + xi) -1 r i ( 1  _ xixj)  -1 
i i < j  

in terms of Schur functions. It follows from [M], example 4, section 1.5, that this 

equals 

E (-1)1~1S~' 
ht(A)~4 

and we need to multiply this by l--[i(1 - xi) -2 = ( ~ i  S(i)) 2" We multiply by the 

two factors of y~i S(i) one at a time. By Young's rule, the coefficient of each S~, 

height # < 5, in the product ~ i  S(0 ~ ( - 1 ) I ~ ] S ~  is 

× Z ×× Z 
~2 <_ v l  <_ #1 #a <_ ~2 <_#2 it5 <_ v4 <_#4 

Each sum is 0 or I, depending on whether the difference Pi - # i -  1 is odd or even, 

respectively. Hence, the product is the sum ~ S u, summed over all # of height 

at most 5 in which each difference tti - #i-  1 is even. So, either every part of it is 

even, or every part is odd. We apply Young's rule to the product 

E S(0 E sv. 
i p = ( 2 o + e , 2 b + e , 2 c + e , 2 d + e , e )  

The coefficient of SA in such a sum will be the number of g of height at most 5 

such that  each #, is between Ai+I and k~, and such that either all parts of tt are 

even or all parts are odd. Formula (a) follows. 
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(b) The  second case is similar and a bit  easier. In  this case the functional 

equat ion of L e m m a  32 implies tha t  the Poincar6 series in five variables is 

1-Ii (1 - x ) - 2  r I i < j  (1 - x i x j )  -1. I t  follows from [M], example  5 (b), section 1.5, and 

f rom L e m m a  31 tha t  we need to compute  ()-~i S 2 (0) ~-~a>bS(a,a,b,b)" I t  follows 

f rom Young's  rule tha t  

and also tha t  

is as claimed. | 

a>_b ht(~)_<s 

S(~) ~ S~ 

i ht(~)<5 
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